1
|
Di Talia S. Developmental Control of Cell Cycle and Signaling. Cold Spring Harb Perspect Biol 2025; 17:a041499. [PMID: 38858070 PMCID: PMC11864111 DOI: 10.1101/cshperspect.a041499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In most species, the earliest stages of embryogenesis are characterized by rapid proliferation, which must be tightly controlled with other cellular processes across the large scale of the embryo. The study of this coordination has recently revealed new mechanisms of regulation of morphogenesis. Here, I discuss progress on how the integration of biochemical and mechanical signals leads to the proper positioning of cellular components, how signaling waves ensure the synchronization of the cell cycle, and how cell cycle transitions are properly timed. Similar concepts are emerging in the control of morphogenesis of other tissues, highlighting both common and unique features of early embryogenesis.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
2
|
Puls O, Ruiz-Reynés D, Tavella F, Jin M, Kim Y, Gelens L, Yang Q. Spatial heterogeneity accelerates phase-to-trigger wave transitions in frog egg extracts. Nat Commun 2024; 15:10455. [PMID: 39622792 PMCID: PMC11612452 DOI: 10.1038/s41467-024-54752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) activity rises and falls throughout the cell cycle: a cell-autonomous process called mitotic oscillations. Mitotic oscillators can synchronize when spatially coupled, facilitating rapid, synchronous divisions in large early embryos of Drosophila (~0.5 mm) and Xenopus (~1.2 mm). Diffusion alone cannot achieve such long-range coordination. Instead, studies proposed mitotic waves-phase and trigger waves-as mechanisms of the coordination. How waves establish over time remains unclear. Using Xenopus laevis egg extracts and a Cdk1 Förster resonance energy transfer sensor, we observe a transition from phase to trigger wave dynamics in initially homogeneous cytosol. Spatial heterogeneity promotes this transition. Adding nuclei accelerates entrainment. The system transitions almost immediately when driven by metaphase-arrested extracts. Numerical simulations suggest phase waves appear transiently as trigger waves take time to entrain the system. Therefore, we show that both waves belong to a single biological process capable of coordinating the cell cycle over long distances.
Collapse
Affiliation(s)
- Owen Puls
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Ruiz-Reynés
- Laboratory of Dynamics in Biological Systems, KU Leuven, Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
- IFISC (CSIC-UIB). Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122, Palma de Mallorca, Spain
| | - Franco Tavella
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minjun Jin
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yeonghoon Kim
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, KU Leuven, Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium.
| | - Qiong Yang
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Puls O, Ruiz-Reynés D, Tavella F, Jin M, Kim Y, Gelens L, Yang Q. Mitotic waves in frog egg extracts: Transition from phase waves to trigger waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576267. [PMID: 38496576 PMCID: PMC10942321 DOI: 10.1101/2024.01.18.576267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cyclin-dependent kinase 1 (Cdk1) activity rises and falls throughout the cell cycle, a cell-autonomous process known as mitotic oscillations. These oscillators can synchronize when spatially coupled, providing a crucial foundation for rapid synchronous divisions in large early embryos like Drosophila (~ 0.5 mm) and Xenopus (~ 1.2 mm). While diffusion alone cannot achieve such long-range coordination, recent studies have proposed two types of mitotic waves, phase and trigger waves, to explain the phenomena. How the waves establish over time for efficient spatial coordination remains unclear. Using Xenopus laevis egg extracts and a Cdk1 FRET sensor, we observe a transition from phase waves to a trigger wave regime in an initially homogeneous cytosol. Adding nuclei accelerates such transition. Moreover, the system transitions almost immediately to this regime when externally driven by metaphase-arrested extracts from the boundary. Employing computational modeling, we pinpoint how wave nature, including speed-period relation, depends on transient dynamics and oscillator properties, suggesting that phase waves appear transiently due to the time required for trigger waves to entrain the system and that spatial heterogeneity promotes entrainment. Therefore, we show that both waves belong to a single biological process capable of coordinating the cell cycle over long distances.
Collapse
Affiliation(s)
- Owen Puls
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Ruiz-Reynés
- Laboratory of Dynamics in Biological Systems, KU Leuven, Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
- IFISC (CSIC-UIB). Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Franco Tavella
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjun Jin
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yeonghoon Kim
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, KU Leuven, Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Qiong Yang
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Santella L, Gordon R, Chen Z, Tuszynski J. Editorial: Waves in fertilization, cell division and embryogenesis. Biosystems 2021; 210:104560. [PMID: 34624360 DOI: 10.1016/j.biosystems.2021.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Richard Gordon
- Gulf Specimen Marine Laboratory, Panacea, FL, USA; C.S. Mott Center for Human Growth & Development, Detroit, MI, USA.
| | - Zhan Chen
- Georgia Southern University, Statesboro, GA, USA.
| | | |
Collapse
|