1
|
Abel DL. Selection in molecular evolution. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 107:54-63. [PMID: 39137534 DOI: 10.1016/j.shpsa.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Evolution requires selection. Molecular/chemical/preDarwinian evolution is no exception. One molecule must be selected over another for molecular evolution to occur and advance. Evolution, however, has no goal. The laws of physics have no utilitarian desire, intent or proficiency. Laws and constraints are blind to "usefulness." How then were potential multi-step processes anticipated, valued and pursued by inanimate nature? Can orchestration of formal systems be physico-chemically spontaneous? The purely physico-dynamic self-ordering of Chaos Theory and irreversible non-equilibrium thermodynamic "engines of disequilibria conversion" achieve neither orchestration nor formal organization. Natural selection is a passive and after-the-fact-of-life selection. Darwinian selection reduces to the differential survival and reproduction of the fittest already-living organisms. In the case of abiogenesis, selection had to be 1) Active, 2) Pre-Function, and 3) Efficacious. Selection had to take place at the molecular level prior to the existence of non-trivial functional processes. It could not have been passive or secondary. What naturalistic mechanisms might have been at play?
Collapse
Affiliation(s)
- David Lynn Abel
- The Gene Emergence Project, Proto-BioCybernetics & Proto-Cellular Metabolomics, The Origin of Life Science Foundation, Inc., 14005 Youderian Drive, Bowie, MD, 20721-2225, USA.
| |
Collapse
|
2
|
Di Giulio M. Theories of the origin of the genetic code: Strong corroboration for the coevolution theory. Biosystems 2024; 239:105217. [PMID: 38663520 DOI: 10.1016/j.biosystems.2024.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
I analyzed all the theories and models of the origin of the genetic code, and over the years, I have considered the main suggestions that could explain this origin. The conclusion of this analysis is that the coevolution theory of the origin of the genetic code is the theory that best captures the majority of observations concerning the organization of the genetic code. In other words, the biosynthetic relationships between amino acids would have heavily influenced the origin of the organization of the genetic code, as supported by the coevolution theory. Instead, the presence in the genetic code of physicochemical properties of amino acids, which have also been linked to the physicochemical properties of anticodons or codons or bases by stereochemical and physicochemical theories, would simply be the result of natural selection. More explicitly, I maintain that these correlations between codons, anticodons or bases and amino acids are in fact the result not of a real correlation between amino acids and codons, for example, but are only the effect of the intervention of natural selection. Specifically, in the genetic code table we expect, for example, that the most similar codons - that is, those that differ by only one base - will have more similar physicochemical properties. Therefore, the 64 codons of the genetic code table ordered in a certain way would also represent an ordering of some of their physicochemical properties. Now, a study aimed at clarifying which physicochemical property of amino acids has influenced the allocation of amino acids in the genetic code has established that the partition energy of amino acids has played a role decisive in this. Indeed, under some conditions, the genetic code was found to be approximately 98% optimized on its columns. In this same work, it was shown that this was most likely the result of the action of natural selection. If natural selection had truly allocated the amino acids in the genetic code in such a way that similar amino acids also have similar codons - this, not through a mechanism of physicochemical interaction between, for example, codons and amino acids - then it might turn out that even different physicochemical properties of codons (or anticodons or bases) show some correlation with the physicochemical properties of amino acids, simply because the partition energy of amino acids is correlated with other physicochemical properties of amino acids. It is very likely that this would inevitably lead to a correlation between codons (or anticodons or bases) and amino acids. In other words, since the codons (anticodons or bases) are ordered in the genetic code, that is to say, some of their physicochemical properties should also be ordered by a similar order, and given that the amino acids would also appear to have been ordered in the genetic code by selection natural, then it should inevitably turn out that there is a correlation between, for example, the hydrophobicity of anticodons and that of amino acids. Instead, the intervention of natural selection in organizing the genetic code would appear to be highly compatible with the main mechanism of structuring the genetic code as supported by the coevolution theory. This would make the coevolution theory the only plausible explanation for the origin of the genetic code.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
3
|
Di Giulio M. The time of appearance of the genetic code. Biosystems 2024; 237:105159. [PMID: 38373543 DOI: 10.1016/j.biosystems.2024.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
I support the hypothesis that the origin of the genetic code occurred simultaneously with the evolution of cellularity. That is to say, I favour the hypothesis that the origin of the genetic code is a very, very late event in the history of life on Earth. I corroborate this hypothesis with observations favouring the progenote's stage for the Last Universal Common Ancestor (LUCA), for the ancestor of bacteria and that of archaea. Indeed, these progenotic stages would imply that - at that time - the origin of the genetic code was still ongoing simply because this origin would fall within the very definition of progenote. Therefore, if the evolution of cellularity had truly been coeval with the origin of the genetic code - at least in its terminal part - then this would favour theories such as the coevolution theory of the origin of the genetic code because this theory would postulate that this origin must have occurred in extremely complex protocellular conditions and not concerning stereochemical or physicochemical interactions having to do with other stages of the origin of life. In this sense, the coevolution theory would be corroborated while the stereochemical and physicochemical theories would be damaged. Therefore, the origin of the genetic code would be linked to the origin of the cell and not to the origin of life as sometimes asserted. Therefore, I will discuss the late hypothesis of the origin of the genetic code in the context of the theories proposed to explain this origin and more generally of its implications for the early evolution of life.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
4
|
Davey-Young J, Hasan F, Tennakoon R, Rozik P, Moore H, Hall P, Cozma E, Genereaux J, Hoffman KS, Chan PP, Lowe TM, Brandl CJ, O’Donoghue P. Mistranslating the genetic code with leucine in yeast and mammalian cells. RNA Biol 2024; 21:1-23. [PMID: 38629491 PMCID: PMC11028032 DOI: 10.1080/15476286.2024.2340297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
Collapse
Affiliation(s)
- Josephine Davey-Young
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Henry Moore
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter Hall
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Di Giulio M. The error minimization of the genetic code would have been determined by natural selection and not by a neutral evolution. Biosystems 2023; 224:104838. [PMID: 36657560 DOI: 10.1016/j.biosystems.2023.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
I discuss the mechanisms by which the error minimization observed in the genetic code would have been produced; that is, the ability of the genetic code to buffer, for example, the deleterious effects of translation errors. Here, I analyse whether the error minimization was produced by the intervention of natural selection or whether it is an emergent, that is, neutral property; in other words, whether it is a by-product of another mechanism that was structuring the genetic code. In particular, I criticize Massey's simulations (2008) - favouring the neutral hypothesis - which, containing elements of natural selection, would render his conclusions at least partly tautological. Furthermore, I criticize some of Koonin's (2017) interpretations regarding Massey's simulations. Finally, I criticize the opinion of Janzen et al. (2022) according to which their self-aminoacylating ribozyme system would have been capable of generating an error minimization of the genetic code as its emergent property. That is to say, I criticize, more generally, a neutral origin of error minimization. Indeed, any mechanism for structuring the genetic code would be capable of generating, in theory, such an emergent property. The problem is that to demonstrate this, it would be necessary to show that the level of optimization achieved by the genetic code would be that expected under the neutral hypothesis, the one that Janzen et al. (2022) instead they did not make. Therefore, their view is only a hypothesis and is very far from being corroborated by their results. Instead, in the literature there is a strong evidence that the level of optimization achieved by the genetic code is so high that it would imply, per se, an intervention of natural selection in the origin of error minimization of the genetic code. On the other hand, this level of optimization would be very far from what might have been produced by a neutral process.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
6
|
Harrison SA, Palmeira RN, Halpern A, Lane N. A biophysical basis for the emergence of the genetic code in protocells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148597. [PMID: 35868450 DOI: 10.1016/j.bbabio.2022.148597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.
Collapse
Affiliation(s)
- Stuart A Harrison
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Raquel Nunes Palmeira
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Aaron Halpern
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
7
|
Arguments against the stereochemical theory of the origin of the genetic code. Biosystems 2022; 221:104750. [PMID: 35970477 DOI: 10.1016/j.biosystems.2022.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
I support the hypothesis that stereochemical theory is unnatural because it is based on artificial and not simple mechanisms as required for a good theory. Indeed, for stereochemical theory the origin of the genetic code requires, in the first place, a primary interaction, for example, between a codon and an amino acid on a proto-tRNA. But this interaction is a necessary but not sufficient condition, because the evolution of the mRNA molecule, which would really define the genetic code, is still necessary for the complete origin of the genetic code. In other words, the need for two molecules, tRNA and mRNA, to define the genetic code, with their at least partial independence would testify to an artificial mechanism typical of stereochemical theory because it would not guarantee that amino acid-codon (or -anticodon) assignments realized in the first phase of the origin of the genetic code, would necessarily be maintained also in the second phase of its completion. Furthermore, the genetic code encodes for amino acids but amino acids are not the truly functional aspect, they are only intermediaries, of their final products, proteins, which are the only true entities actually coded by genes. Therefore, it would not be immediately clear from the point of view of stereochemical theory, to say why it is the amino acids and not the proteins that are involved in the primary stereochemical interactions that would have led to the origin of the genetic code. Hence, at least some of the stereochemical theory models would be not very credible, not being able to say much about the coding of proteins by genes. Finally, I inspected the genetic code table following the logic that more closely similar amino acids should - according to stereochemical theory - be coded by highly similar codons, finding that only a few pairs of amino acids actually satisfy this logic, further discretizing the stereochemical theory.
Collapse
|