1
|
Jyoti TP, Chandel S, Singh R. Flow cytometry: Aspects and application in plant and biological science. JOURNAL OF BIOPHOTONICS 2024; 17:e202300423. [PMID: 38010848 DOI: 10.1002/jbio.202300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Flow cytometry is a potent method that enables the quick and concurrent investigation of several characteristics of single cells in solution. Photodiodes or photomultiplier tubes are employed to detect the dispersed and fluorescent light signals that are produced by the laser beam as it passes through the cells. Photodetectors transform the light signals produced by the laser into electrical impulses. A computer then analyses these electrical impulses to identify and measure the various cell populations depending on their fluorescence or light scattering characteristics. Based on their fluorescence or light scattering properties, cell populations can be examined and/or isolated. This review covers the basic principle, components, working and specific biological applications of flow cytometry, including studies on plant, cell and molecular biology and methods employed for data processing and interpretation as well as the potential future relevance of this methodology in light of retrospective analysis and recent advancements in flow cytometry.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
2
|
Farkas A, Gaál E, Ivanizs L, Blavet N, Said M, Holušová K, Szőke-Pázsi K, Spitkó T, Mikó P, Türkösi E, Kruppa K, Kovács P, Darkó É, Szakács É, Bartoš J, Doležel J, Molnár I. Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci Rep 2023; 13:20499. [PMID: 37993509 PMCID: PMC10665447 DOI: 10.1038/s41598-023-47845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Collapse
Affiliation(s)
- András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary.
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Nicolas Blavet
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Kateřina Holušová
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Tamás Spitkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Mikó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Jan Bartoš
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| |
Collapse
|
3
|
Cápal P, Said M, Molnár I, Doležel J. Flow Cytometric Analysis and Sorting of Plant Chromosomes. Methods Mol Biol 2023; 2672:177-200. [PMID: 37335476 DOI: 10.1007/978-1-0716-3226-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Flow cytometry offers a unique way of analyzing and manipulating plant chromosomes. During a rapid movement in a liquid stream, large populations can be classified in a short time according to their fluorescence and light scatter properties. Chromosomes whose optical properties differ from other chromosomes in a karyotype can be purified by flow sorting and used in a range of applications in cytogenetics, molecular biology, genomics, and proteomics. As the samples for flow cytometry must be liquid suspensions of single particles, intact chromosomes must be released from mitotic cells. This protocol describes a procedure for preparation of suspensions of mitotic metaphase chromosomes from meristem root tips and their flow cytometric analysis and sorting for various downstream applications.
Collapse
Affiliation(s)
- Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Said M, Cápal P, Farkas A, Gaál E, Ivanizs L, Friebe B, Doležel J, Molnár I. Flow karyotyping of wheat- Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1017958. [PMID: 36262648 PMCID: PMC9575658 DOI: 10.3389/fpls.2022.1017958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/13/2023]
Abstract
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| |
Collapse
|
5
|
Dmitriev AA, Pushkova EN, Melnikova NV. Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding. Mol Biol 2022. [DOI: 10.1134/s0026893322040045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Zwyrtková J, Blavet N, Doležalová A, Cápal P, Said M, Molnár I, Vrána J, Doležel J, Hřibová E. Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers. Int J Mol Sci 2022; 23:ijms23063191. [PMID: 35328613 PMCID: PMC8948999 DOI: 10.3390/ijms23063191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
Collapse
|
7
|
Tulpová Z, Kovařík A, Toegelová H, Navrátilová P, Kapustová V, Hřibová E, Vrána J, Macas J, Doležel J, Šimková H. Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. THE PLANT GENOME 2022; 15:e20191. [PMID: 35092350 DOI: 10.1002/tpg2.20191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.
Collapse
Affiliation(s)
- Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Navrátilová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
8
|
Guenay-Greunke Y, Bohan DA, Traugott M, Wallinger C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci Rep 2021; 11:19510. [PMID: 34593851 PMCID: PMC8484467 DOI: 10.1038/s41598-021-98018-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
High-throughput sequencing platforms are increasingly being used for targeted amplicon sequencing because they enable cost-effective sequencing of large sample sets. For meaningful interpretation of targeted amplicon sequencing data and comparison between studies, it is critical that bioinformatic analyses do not introduce artefacts and rely on detailed protocols to ensure that all methods are properly performed and documented. The analysis of large sample sets and the use of predefined indexes create challenges, such as adjusting the sequencing depth across samples and taking sequencing errors or index hopping into account. However, the potential biases these factors introduce to high-throughput amplicon sequencing data sets and how they may be overcome have rarely been addressed. On the example of a nested metabarcoding analysis of 1920 carabid beetle regurgitates to assess plant feeding, we investigated: (i) the variation in sequencing depth of individually tagged samples and the effect of library preparation on the data output; (ii) the influence of sequencing errors within index regions and its consequences for demultiplexing; and (iii) the effect of index hopping. Our results demonstrate that despite library quantification, large variation in read counts and sequencing depth occurred among samples and that the sequencing error rate in bioinformatic software is essential for accurate adapter/primer trimming and demultiplexing. Moreover, setting an index hopping threshold to avoid incorrect assignment of samples is highly recommended.
Collapse
Affiliation(s)
- Yasemin Guenay-Greunke
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria. .,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria.
| | - David A Bohan
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Corinna Wallinger
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria
| |
Collapse
|
9
|
Perutka Z, Kaduchová K, Chamrád I, Beinhauer J, Lenobel R, Petrovská B, Bergougnoux V, Vrána J, Pecinka A, Doležel J, Šebela M. Proteome Analysis of Condensed Barley Mitotic Chromosomes. FRONTIERS IN PLANT SCIENCE 2021; 12:723674. [PMID: 34497629 PMCID: PMC8419432 DOI: 10.3389/fpls.2021.723674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Proteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary. This is particularly true for the proteins of condensed chromosomes and, in particular, chromosomes of plants. Here, we purified barley mitotic metaphase chromosomes by a flow cytometric sorting and characterized their proteins. Peptides from tryptic protein digests were fractionated either on a cation exchanger or reversed-phase microgradient system before liquid chromatography coupled to tandem mass spectrometry. Chromosomal proteins comprising almost 900 identifications were classified based on a combination of software prediction, available database localization information, sequence homology, and domain representation. A biological context evaluation indicated the presence of several groups of abundant proteins including histones, topoisomerase 2, POLYMERASE 2, condensin subunits, and many proteins with chromatin-related functions. Proteins involved in processes related to DNA replication, transcription, and repair as well as nucleolar proteins were found. We have experimentally validated the presence of FIBRILLARIN 1, one of the nucleolar proteins, on metaphase chromosomes, suggesting that plant chromosomes are coated with proteins during mitosis, similar to those of human and animals. These results improve significantly the knowledge of plant chromosomal proteins and provide a basis for their functional characterization and comparative phylogenetic analyses.
Collapse
Affiliation(s)
- Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Kateřina Kaduchová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Ivo Chamrád
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jana Beinhauer
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Beáta Petrovská
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Véronique Bergougnoux
- Department of Molecular Biology, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
10
|
Importance of Landraces in Cereal Breeding for Stress Tolerance. PLANTS 2021; 10:plants10071267. [PMID: 34206299 PMCID: PMC8309184 DOI: 10.3390/plants10071267] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.
Collapse
|
11
|
Doležel J, Lucretti S, Molnár I, Cápal P, Giorgi D. Chromosome analysis and sorting. Cytometry A 2021; 99:328-342. [PMID: 33615737 PMCID: PMC8048479 DOI: 10.1002/cyto.a.24324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Sergio Lucretti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Debora Giorgi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| |
Collapse
|
12
|
Iannucci A, Makunin AI, Lisachov AP, Ciofi C, Stanyon R, Svartman M, Trifonov VA. Bridging the Gap between Vertebrate Cytogenetics and Genomics with Single-Chromosome Sequencing (ChromSeq). Genes (Basel) 2021; 12:124. [PMID: 33478118 PMCID: PMC7835784 DOI: 10.3390/genes12010124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 01/23/2023] Open
Abstract
The study of vertebrate genome evolution is currently facing a revolution, brought about by next generation sequencing technologies that allow researchers to produce nearly complete and error-free genome assemblies. Novel approaches however do not always provide a direct link with information on vertebrate genome evolution gained from cytogenetic approaches. It is useful to preserve and link cytogenetic data with novel genomic discoveries. Sequencing of DNA from single isolated chromosomes (ChromSeq) is an elegant approach to determine the chromosome content and assign genome assemblies to chromosomes, thus bridging the gap between cytogenetics and genomics. The aim of this paper is to describe how ChromSeq can support the study of vertebrate genome evolution and how it can help link cytogenetic and genomic data. We show key examples of ChromSeq application in the refinement of vertebrate genome assemblies and in the study of vertebrate chromosome and karyotype evolution. We also provide a general overview of the approach and a concrete example of genome refinement using this method in the species Anolis carolinensis.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (C.C.); (R.S.)
| | - Alexey I. Makunin
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK;
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia;
| | - Artem P. Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia;
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Claudio Ciofi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (C.C.); (R.S.)
| | - Roscoe Stanyon
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (C.C.); (R.S.)
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | | |
Collapse
|