1
|
Arend M, Paulitz E, Hsieh YE, Nikoloski Z. Scaling metabolic model reconstruction up to the pan-genome level: A systematic review and prospective applications to photosynthetic organisms. Metab Eng 2025; 90:67-77. [PMID: 40081464 DOI: 10.1016/j.ymben.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Advances in genomics technologies have generated large data sets that provide tremendous insights into the genetic diversity of taxonomic groups. However, it remains challenging to pinpoint the effect of genetic diversity on different traits without performing resource-intensive phenotyping experiments. Pan-genome-scale metabolic models (panGEMs) extend traditional genome-scale metabolic models by considering the entire reaction repertoire that enables the prediction and comparison of metabolic capabilities within a taxonomic group. Here, we systematically review the state-of-the-art methodologies for constructing panGEMs, focusing on used tools, databases, experimental datasets, and orthology relationships. We highlight the unique advantages of panGEMs compared to single-species GEMs in predicting metabolic phenotypes and in guiding the experimental validation of genome annotations. In addition, we emphasize the disparity between the available (pan-)genomic data on photosynthetic organisms and their under-representation in current (pan)GEMs. Finally, we propose a perspective for tackling the reconstruction of panGEMs for photosynthetic eukaryotes that can help advance our understanding of the metabolic diversity in this taxonomic group.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Emilian Paulitz
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Yunli Eric Hsieh
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
2
|
You L, Gao M, Damgaard C, Zhu D, Wang Y, Xiao N, Zhang T, Wang Z, Dai W. Elevated temperature magnifies the toxicity of imidacloprid in the collembolan, Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126260. [PMID: 40250516 DOI: 10.1016/j.envpol.2025.126260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Global warming subjects soil organisms to elevated temperature stress, while simultaneously altering the detoxification processes for pollutants within these organisms. The combined stressors of increased temperature and pollutants may impose synergistic stress on soil fauna, necessitating detailed investigation. Here, we exposed Collembola (Folsomia candida) to imidacloprid (a neonicotinoid pesticide) in combination with a range of constant temperatures in a full-factorial experimental design to assess the integrated impacts on survival, growth, and bioaccumulation. The results revealed that high temperatures and imidacloprid synergistically inhibited the survival of F. candida. Under 6.4 mg/kg imidacloprid exposure, survival rates decreased by 41.38 % at 30.2 °C and 68.75 % at 30.5 °C, compared to the same temperature treatments without imidacloprid exposure. Bayesian model analysis confirmed a significant synergistic interaction between imidacloprid and temperature on survival. Interestingly, at elevated temperatures, the internal concentration of imidacloprid in F. candida significantly decreased, while the soil concentration of the insecticide remained stable. This suggests that the observed synergistic effect is not due to increased pollutant accumulation within F. candida at higher temperatures, but rather the exhaustion of energy resources needed for detoxification and thermal stress management. This dual-stressor-induced energy competition underpins the synergistic interactions observed. Our findings highlight the significant synergistic effects of high temperatures and imidacloprid on Collembola, underscoring an increased ecological risk under such conditions.
Collapse
Affiliation(s)
- Lelin You
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area of Chongqing, Chongqing, 400716, China.
| | - Christian Damgaard
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4, 8000, Aarhus, Denmark
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yifei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Naichuan Xiao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tingting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zifang Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Wencai Dai
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Wendering P, Andreou GM, Laitinen RAE, Nikoloski Z. Metabolic modeling identifies determinants of thermal growth responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025. [PMID: 39856022 DOI: 10.1111/nph.20420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Temperature is a critical environmental factor affecting nearly all plant processes, including growth, development, and yield. Yet, despite decades of research, we lack the ability to predict plant performance at different temperatures, limiting the development of climate-resilient crops. Further, there is a pressing need to bridge the gap between the prediction of physiological and molecular traits to improve our understanding and manipulation of plant temperature responses. Here, we developed the first enzyme-constrained model of Arabidopsis thaliana's metabolism, facilitating predictions of growth-related phenotypes at different temperatures. We showed that the model can be employed for in silico identification of genes that affect plant growth at suboptimal growth temperature. Using mutant lines, we validated the genes predicted to affect plant growth, demonstrating the potential of metabolic modeling in accurately predicting plant thermal responses. The temperature-dependent enzyme-constrained metabolic model provides a template that can be used for developing sophisticated strategies to engineer climate-resilient crops.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Gregory M Andreou
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, Helsinki, 00790, Finland
| | - Roosa A E Laitinen
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, Helsinki, 00790, Finland
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
4
|
Jiang D, Cai X, Fang H, Li Y, Zhang Z, Chen H, Zheng Z, Wang W, Sun Y. Coexposure to ambient air pollution and temperature and its associations with birth outcomes in women undergoing assisted reproductive technology in Fujian, China: A retrospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136539. [PMID: 39561545 DOI: 10.1016/j.jhazmat.2024.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The interactions between pollutants and temperature coexposure, the mixing effects and their potential mechanisms remain uncertain. METHODS This retrospective cohort study included 11,766 women with infertility who received treatment at Fujian Hospital between 2015 and 2024. The daily mean concentrations of the six pollutants and the relative humidity and temperature data were acquired from the Fujian region. Data on genes were obtained from the Comparative Toxicogenomics Database. RESULTS O3 (aOR=0.80, 95 % CI=0.725--0.891) and temperature (aOR=0.936, 95 % CI=0.916--0.957) were negatively correlated with live birth rates. Moreover, PM10 (aOR=1.135, 95 % CI=1.028--1.252) and PM2.5 (aOR=1.146, 95 % CI=1.03--1.274) were positively associated with preterm birth. Among the effects on live births, PM2.5, PM10, NO2, CO, and SO2 had significant synergistic effects with temperature; in addition, O3 had significant antagonistic effects with temperature. A notable trend toward declining live birth rates with elevated concentrations of mixed pollutants was observed. Different infertility patients have different sensitivities to coexposure. Gene enrichment and cell experiments are associated mainly with cellular life activities. CONCLUSIONS Individual effects, interactions, and mixed effects between temperature and air pollutants and birth outcomes persist when air pollutant levels are relatively low. AAP may trigger miscarriage through cytotoxic effects.
Collapse
Affiliation(s)
- Dongdong Jiang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Hua Fang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuehong Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Yang Y, Wan W. Water-logged composting with sealed system enhances phosphorus availability and changes ecological attributes of bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123599. [PMID: 39642821 DOI: 10.1016/j.jenvman.2024.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Deciphering effects of sealed environment on phosphorus (P) availability and microbial community during water-logged composting is an essential but underestimated theme. Research targets are to unveil divergences in P fractions and bacterial landscapes between breathable and sealed systems using molecular and statistical tools. Water-logged composting with sealed system enhanced P availability, with soluble reactive P in overlying water notably increasing from 1.20 to 1.92 mg L-1 and available P in composting substrate significantly arising from 1.61 to 2.28 g kg-1. Higher abundances of organic P (Po)-mineralizing genes, including β-propeller phytase-encoding gene of bpp, acid phosphatase-encoding gene of phoC, alkaline phosphatase-encoding gene of phoD, and phosphonoacetaldehyde hydrolase-encoding gene of phnX, were found in sealed system than in breathable system. Bacterial community composition varied notably between sealed and breathable systems, with dominant bacterial phyla of Proteobacteria and Actinobacteriota in overlying water were notably more abundant in sealed and breathable systems, respectively. Bacteria in sealed system rather than breathable system displayed higher community complexity and stability, stronger migration potential and phylogenetic signal, and were affected more by determinism. Our findings highlight ecological consequences of water-logged composting with sealed system, and these findings might guide composting in a water-logged way to obtain P fertilizer.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Botanical Garden, Wuhan, 430070, PR China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Chinese Academy of Science Wuhan Botanical Garden, Wuhan, 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430070, PR China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Botanical Garden, Wuhan, 430070, PR China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Chinese Academy of Science Wuhan Botanical Garden, Wuhan, 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430070, PR China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
6
|
Liu M, Sun Y, Teh DBL, Zhang Y, Cao D, Mei Q. Nanothermometry for cellular temperature monitoring and disease diagnostics. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractBody temperature variations, including the generation, transfer, and dissipation of heat, play an important role throughout life and participate in all biological events. Cellular temperature information is an indispensable link in the comprehensive understanding of life science processes, but traditional testing strategies cannot provide sufficient information due to their low precision and inefficient cellular‐entrance. In recent years, with the help of luminescent nanomaterials, a variety of new thermometers have been developed to achieve real‐time temperature measurement at the micro/nano scale. In this review, we summarized the latest advances in several nanoparticles for cellular temperature detection and their related applications in revealing cell metabolism and disease diagnosis. Furthermore, this review proposed a few challenges for the nano‐thermometry, expecting to spark novel thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Daniel Boon Loong Teh
- Departments of Ophthalmology Anatomy Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Donglin Cao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University Guangzhou China
- Department of Laboratory Medicine Guangdong Second Provincial General Hospital Guangzhou China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| |
Collapse
|
7
|
Kruglov AG, Romshin AM, Nikiforova AB, Plotnikova A, Vlasov II. Warm Cells, Hot Mitochondria: Achievements and Problems of Ultralocal Thermometry. Int J Mol Sci 2023; 24:16955. [PMID: 38069275 PMCID: PMC10707128 DOI: 10.3390/ijms242316955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Temperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments. A comparative analysis is conducted of the results obtained using these methods for the cytosol, nucleus, endo-/sarcoplasmic reticulum, and mitochondria, as well as their biological consistency. Special attention is given to the limitations, possible sources of errors and ambiguities of the sensor's responses. The issue of biological temperature limits in cells and organelles is considered. It is concluded that the elaboration of experimental protocols for ultralocal temperature measurements that take into account both the characteristics of biological systems, as well as the properties and limitations of each type of sensor is of critical importance for the generation of reliable results and further progress in this field.
Collapse
Affiliation(s)
- Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Alexey M. Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anna B. Nikiforova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Arina Plotnikova
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), 115409 Moscow, Russia;
| | - Igor I. Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
8
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
9
|
Ferreira MADM, da Silveira WB, Nikoloski Z. PARROT: Prediction of enzyme abundances using protein-constrained metabolic models. PLoS Comput Biol 2023; 19:e1011549. [PMID: 37856550 PMCID: PMC10617714 DOI: 10.1371/journal.pcbi.1011549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Protein allocation determines the activity of cellular pathways and affects growth across all organisms. Therefore, different experimental and machine learning approaches have been developed to quantify and predict protein abundance and how they are allocated to different cellular functions, respectively. Yet, despite advances in protein quantification, it remains challenging to predict condition-specific allocation of enzymes in metabolic networks. Here, using protein-constrained metabolic models, we propose a family of constrained-based approaches, termed PARROT, to predict how much of each enzyme is used based on the principle of minimizing the difference between a reference and an alternative growth condition. To this end, PARROT variants model the minimization of enzyme reallocation using four different (combinations of) distance functions. We demonstrate that the PARROT variant that minimizes the Manhattan distance between the enzyme allocation of a reference and an alternative condition outperforms existing approaches based on the parsimonious distribution of fluxes or enzymes for both Escherichia coli and Saccharomyces cerevisiae. Further, we show that the combined minimization of flux and enzyme allocation adjustment leads to inconsistent predictions. Together, our findings indicate that minimization of protein allocation rather than flux redistribution is a governing principle determining steady-state pathway activity for microorganism grown in alternative growth conditions.
Collapse
Affiliation(s)
| | | | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
10
|
Griesemer M, Navid A. Uses of Multi-Objective Flux Analysis for Optimization of Microbial Production of Secondary Metabolites. Microorganisms 2023; 11:2149. [PMID: 37763993 PMCID: PMC10536367 DOI: 10.3390/microorganisms11092149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Secondary metabolites are not essential for the growth of microorganisms, but they play a critical role in how microbes interact with their surroundings. In addition to this important ecological role, secondary metabolites also have a variety of agricultural, medicinal, and industrial uses, and thus the examination of secondary metabolism of plants and microbes is a growing scientific field. While the chemical production of certain secondary metabolites is possible, industrial-scale microbial production is a green and economically attractive alternative. This is even more true, given the advances in bioengineering that allow us to alter the workings of microbes in order to increase their production of compounds of interest. This type of engineering requires detailed knowledge of the "chassis" organism's metabolism. Since the resources and the catalytic capacity of enzymes in microbes is finite, it is important to examine the tradeoffs between various bioprocesses in an engineered system and alter its working in a manner that minimally perturbs the robustness of the system while allowing for the maximum production of a product of interest. The in silico multi-objective analysis of metabolism using genome-scale models is an ideal method for such examinations.
Collapse
Affiliation(s)
| | - Ali Navid
- Lawrence Livermore National Laboratory, Biosciences & Biotechnology Division, Physical & Life Sciences Directorate, Livermore, CA 94550, USA
| |
Collapse
|