1
|
Processing Agroindustry By-Products for Obtaining Value-Added Products and Reducing Environmental Impact. J CHEM-NY 2022. [DOI: 10.1155/2022/3656932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over four billion tons of foods are produced annually on the planet, and about a third is wasted. A minimal part of this waste is incinerated or sent to landfills for treatment, avoiding contamination and diseases; the rest is disposed of elsewhere. The current review was aimed at broadening the panorama on the potential of agroindustrial by-products in applications such as biofuels, biomaterials, biocompounds, pharmaceuticals, and food ingredients. It also exposes the main chemical, physical, and biochemical treatments for converting by-products into raw materials with added value through low environmental impact processes. The value of agroindustrial waste is limited due to the scarce information available. There is a need for further research in unexplored areas to find ways of adding value to these by-products and minimizing their contamination. Instead of throwing away or burning by-products, they can be transformed into useful materials such as polymers, fuels, antioxidants, phenols, and lipids, which will effectively reduce food waste and environmental impact.
Collapse
|
2
|
Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation. SUSTAINABILITY 2021. [DOI: 10.3390/su131911034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The technical feasibility of valorizing tequila vinasse (TV), a wastewater with high pollution potential, through the production of biogenic hydrogen via dark fermentation, has long been proven in diverse lab-scale reactors that were operated either in batch or continuous mode. However, such systems have mainly been tested with diluted streams and nutrient supplementation, hindering the techno-economic attractiveness of the TV-to-hydrogen concept at large scale. In this study, the feasibility of producing hydrogen from high-strength undiluted TV with no added extra nutrients was evaluated under batch mesophilic conditions. Additionally, the use of two different acidogenic inocula obtained either by heat or heat-aeration pretreatment was investigated to get a greater understanding of the effect of inoculum type on the process. The results obtained showed that the TV utilized herein contained macro- and micro-nutrients high enough to support the hydrogenogenic activity of both cultures, entailing average hydrogen yields of 2.4–2.6 NL H2/L vinasse and maximum hydrogen production rates of 1.4–1.9 NL H2/L-d. Interestingly, the consumption of lactate and acetate with the concomitant production of butyrate was observed as the main hydrogen-producing route regardless of the inoculum, pointing out the relevance of the lactate-driven dark fermentative process. Clostridium beijerinckii was ascertained as key bacteria, but only in association with microorganisms belonging to the genera Enterobacter and Klebsiella, as revealed by phylogenetic analyses.
Collapse
|
3
|
García-Depraect O, Castro-Muñoz R, Muñoz R, Rene ER, León-Becerril E, Valdez-Vazquez I, Kumar G, Reyes-Alvarado LC, Martínez-Mendoza LJ, Carrillo-Reyes J, Buitrón G. A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes. BIORESOURCE TECHNOLOGY 2021; 324:124595. [PMID: 33453519 DOI: 10.1016/j.biortech.2020.124595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 05/15/2023]
Abstract
Dark fermentation (DF) is one of the most promising biological methods to produce bio-hydrogen and other value added bio-products from carbohydrate-rich wastes and wastewater. However, process instability and low hydrogen production yields and rates have been highlighted as the major bottlenecks preventing further development. Numerous studies have associated such concerns with the inhibitory activity of lactate-producing bacteria (LAB) against hydrogen producers. However, an increasing number of studies have also shown lactate-based metabolic pathways as the prevailing platform for hydrogen production. This opens a vast potential to develop new strategies to deal with the "Achilles heel" of DF - LAB overgrowth - while untapping high-performance DF. This review discusses the key factors influencing the lactate-driven hydrogen production, paying particular attention to substrate composition, the operating conditions, as well as the microbiota involved in the process and its potential functionality and related biochemical routes. The current limitations and future perspectives in the field are also presented.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Idania Valdez-Vazquez
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, Stavanger 4036, Norway
| | - Luis C Reyes-Alvarado
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C., Parque Científico de Yucatán, A.C., Carretera Sierra Papacal - Chuburná Puerto, km 5., 97302 Mérida, Yucatán, Mexico
| | - Leonardo J Martínez-Mendoza
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Julián Carrillo-Reyes
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Germán Buitrón
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| |
Collapse
|