1
|
Ninkuu V, Liu Z, Qin A, Xie Y, Song X, Sun X. Impact of straw returning on soil ecology and crop yield: A review. Heliyon 2025; 11:e41651. [PMID: 39882467 PMCID: PMC11774808 DOI: 10.1016/j.heliyon.2025.e41651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/18/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Several studies have demonstrated the effect of straw return on enhancing soil ecology, promoting sustainable agricultural practices, and cumulative effects on plant yield. Recent studies have focused on straw return methods and their impact on soil nutrient cycling and the overall physicochemical composition of the soil. Despite the substantial progress and successes, several research gaps in these studies require further investigations to harness the full potential of straw return. This review provides a thorough examination of straw diversity and decomposition mechanisms, the effects of straw on soil microorganisms, the interactions between cellulolytic nitrogen-fixing microbes and lignocellulose biomass, as well as nutrient mineralization, organic matter content, and their influence on plant growth and yield. This review also examined the effects of straw return on plant pathogens and its allelopathic impact on plant growth, highlighting research gaps to encourage further studies that could fully realize the potential benefits of straw return in agricultural fields for optimal plant growth.
Collapse
Affiliation(s)
| | | | - Aizhi Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yajie Xie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiao Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| |
Collapse
|
2
|
Kimeklis AK, Gladkov GV, Orlova OV, Afonin AM, Gribchenko ES, Aksenova TS, Kichko AA, Pinaev AG, Andronov EE. The Succession of the Cellulolytic Microbial Community from the Soil during Oat Straw Decomposition. Int J Mol Sci 2023; 24:ijms24076342. [PMID: 37047311 PMCID: PMC10094526 DOI: 10.3390/ijms24076342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The process of straw decomposition is dynamic and is accompanied by the succession of the microbial decomposing community, which is driven by poorly understood interactions between microorganisms. Soil is a complex ecological niche, and the soil microbiome can serve as a source of potentially active cellulolytic microorganisms. Here, we performed an experiment on the de novo colonization of oat straw by the soil microbial community by placing nylon bags with sterilized oat straw in the pots filled with chernozem soil and incubating them for 6 months. The aim was to investigate the changes in decomposer microbiota during this process using conventional sequencing techniques. The bacterial succession during straw decomposition occurred in three phases: the early phase (first month) was characterized by high microbial activity and low diversity, the middle phase (second to third month) was characterized by low activity and low diversity, and the late phase (fourth to sixth months) was characterized by low activity and high diversity. Analysis of amplicon sequencing data revealed three groups of co-changing phylotypes corresponding to these phases. The early active phase was abundant in the cellulolytic members from Pseudomonadota, Bacteroidota, Bacillota, and Actinobacteriota for bacteria and Ascomycota for fungi, and most of the primary phylotypes were gone by the end of the phase. The second intermediate phase was marked by the set of phylotypes from the same phyla persisting in the community. In the mature community of the late phase, apart from the core phylotypes, non-cellulolytic members from Bdellovibrionota, Myxococcota, Chloroflexota, and Thermoproteota appeared. Full metagenome sequencing of the microbial community from the end of the middle phase confirmed that major bacterial and fungal members of this consortium had genes of glycoside hydrolases (GH) connected to cellulose and chitin degradation. The real-time analysis of the selection of these genes showed that their representation varied between phases, and this occurred under the influence of the host, and not the GH family factor. Our findings demonstrate that soil microbial community may act as an efficient source of cellulolytic microorganisms and that colonization of the cellulolytic substrate occurs in several phases, each characterized by its own taxonomic and functional profile.
Collapse
Affiliation(s)
- Anastasiia K. Kimeklis
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (A.K.K.); (E.E.A.)
| | - Grigory V. Gladkov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Olga V. Orlova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Emma S. Gribchenko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana S. Aksenova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Arina A. Kichko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexander G. Pinaev
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Evgeny E. Andronov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
- Correspondence: (A.K.K.); (E.E.A.)
| |
Collapse
|
3
|
Wang H, Li J, Liang X, Tao S, Wu Z, Wei G. Taxonomic and Functional Diversity of
Dendrobium Officinale
Microbiome in Danxia Habitat. J Appl Microbiol 2022; 132:3758-3770. [DOI: 10.1111/jam.15488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Wang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jinyan Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaoxia Liang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Shengchang Tao
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
- Department of Pharmacy, Affiliated Dongguan People's Hospital Southern Medical University Dongguan China
| | - Zhanghua Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
- Shaoguan Institute of Danxia Dendrobium Officinale Shaoguan China
| | - Gang Wei
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
4
|
Harindintwali JD, Zhou J, Muhoza B, Wang F, Herzberger A, Yu X. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112856. [PMID: 34051535 DOI: 10.1016/j.jenvman.2021.112856] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 05/22/2023]
Abstract
To meet the ever-growing human demands for food, fuel, and fiber, agricultural activities have dramatically altered the global carbon (C) and nitrogen (N) cycles. These biogeochemical cycles along with water, phosphorus, and sulfur cycles are fundamental features of life on Earth. Human alteration of the global N cycle has had both positive and negative outcomes. To efficiently feed a growing population, crop-livestock production systems have been developed, however, these systems also contribute significantly to environmental pollution and global climate change. Management of agricultural waste (AW) and the application of N fertilizers are central to the issues of greenhouse gas (GHG) emissions and nutrient runoff that contributes to the eutrophication of water bodies. If managed properly, AW can provide nutrients for plants and contribute to the conservation of soil health. In order to achieve the long-term conservation of agricultural production systems, it is important to promote the proper recycling of AW in agroecosystems and to minimize the reliance on chemical N fertilizers. Composting is one of the sustainable and effective approaches for recycling AW in agriculture. However, the conventional composting process is dilatory and produces compost with low N content compared to chemical N fertilizers. For this reason, comprehensive research is required to improve the composting process and the N content of the soil organic amendments. This work aims to explore the beneficial effects of the integrated application of biochar and specific C and N cycling microorganisms to the composting process and the quality of the composted products. In pursuit of replacing chemical N fertilizers with bio/organic fertilizers, we further discussed the power of the combined application of compost, biochar, and N-fixing bacteria in agricultural production systems. The knowledge of smart integration of AW and microorganisms in agriculture could solve the main agricultural and environmental problems associated with human-induced flows of C and N. Building upon the knowledge disseminated in review to further extensive research will pave the way for better management of agricultural production systems and sustainable C and N cycling in agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| | - Jianli Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Bertrand Muhoza
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, 150028, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Anna Herzberger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|