1
|
Aydogan Avşar P, Akkuş M. ZO-1 Serum Levels as a Potential Biomarker for Psychotic Disorder. Clin Neuropharmacol 2024; 47:67-71. [PMID: 38743599 DOI: 10.1097/wnf.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE There are limited studies in the literature on the relationship between intestinal and blood-brain barrier permeability and the etiology of schizophrenia. We hypothesized that the difference in serum ZO-1 levels in patients with schizophrenia may affect the severity of the disease. The aim of this study was to investigate the role of changes in serum ZO-1 concentrations in the etiopathogenesis of patients with schizophrenia. METHODS A total of 46 patients, 34 with schizophrenia, 12 with a first psychotic attack, and 37 healthy controls, were included in the study. Symptom severity was determined by applying the Positive and Negative Syndrome Scale and the Clinical Global Impression-Severity Scale. Serum ZO-1 levels were measured from venous blood samples. RESULTS Serum ZO-1 levels were higher in patients with psychotic disorder compared to healthy controls. There was no statistically significant difference between the groups in the first psychotic attack group and the schizophrenia patients. There was a statistically significant positive correlation between serum ZO-1 levels and Positive and Negative Syndrome Scale positive symptom score. CONCLUSIONS These findings regarding ZO-1 levels suggest that dysregulation of the blood-brain barrier in psychotic disorder may play a role in the etiology of the disorder.
Collapse
Affiliation(s)
- Pinar Aydogan Avşar
- Department of Child and Adolescent Psychiatry, Alanya Alaaddin Keykubat University Training and Research Hospital, Alanya, Turkey
| | - Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Evliya Celebi Education and Research Hospital, Kütahya, Turkey
| |
Collapse
|
2
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
3
|
Male Stressed Mice Having Behavioral Control Exhibit Escalations in Dorsal Dentate Adult-Born Neurons and Spatial Memory. Int J Mol Sci 2023; 24:ijms24031983. [PMID: 36768303 PMCID: PMC9916676 DOI: 10.3390/ijms24031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
An escapable (ES)/inescapable stress (IS) paradigm was used to study whether behavioral control and repeated footshock stressors may affect adult neurogenesis and related cognitive function. Male stressed mice having behavioral control (ES) had a short-term escalation in dorsal dentate gyrus (DG) neurogenesis, while similarly stressed mice having no such control had unaltered neurogenesis as compared to control mice receiving no stressors. Paradoxically, ES and IS mice had comparable stress-induced corticosterone elevations throughout the stress regimen. Appetitive operant conditioning and forced running procedures were used to model learning and exercise effects in this escapable/inescapable paradigm. Further, conditioning and running procedures did not seem to affect the mice's corticosterone or short-term neurogenesis. ES and IS mice did not show noticeable long-term changes in their dorsal DG neurogenesis, gliogenesis, local neuronal density, apoptosis, autophagic flux, or heterotypic stress responses. ES mice were found to have a greater number of previously labeled and functionally integrated DG neurons as compared to IS and control mice 6 weeks after the conclusion of the stressor regimen. Likewise, ES mice outperformed IS and non-stressed control mice for the first two, but not the remaining two, trials in the object location task. Compared to non-stressed controls, temozolomide-treated ES and IS mice having a lower number of dorsal DG 6-week-old neurons display poor performance in their object location working memory. These results, taken together, prompt us to conclude that repeated stressors, albeit their corticosterone secretion-stimulating effect, do not necessary affect adult dorsal DG neurogenesis. Moreover, stressed animals having behavioral control may display adult neurogenesis escalation in the dorsal DG. Furthermore, the number of 6-week-old and functionally-integrated neurons in the dorsal DG seems to confer the quality of spatial location working memory. Finally, these 6-week-old, adult-born neurons seem to contribute spatial location memory in a use-dependent manner.
Collapse
|
4
|
Yang FR, Zhu XX, Kong MW, Zou XJ, Ma QY, Li XJ, Chen JX. Xiaoyaosan Exerts Antidepressant-Like Effect by Regulating Autophagy Involves the Expression of GLUT4 in the Mice Hypothalamic Neurons. Front Pharmacol 2022; 13:873646. [PMID: 35784760 PMCID: PMC9243304 DOI: 10.3389/fphar.2022.873646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Many studies have proven that autophagy plays a pivotal role in the development of depression and it also affects the expression of GLUT4 in the hypothalamus. Xiaoyaosan has been shown to exert antidepressant effects in a variety of ways, but its underlying mechanism by which Xiaoyaosan regulates autophagy as well as GLUT4 in the hypothalamus remains unclear. Thus, in this study, we established a mouse model of depression induced by chronic unpredictable mild stress (CUMS), and set up autophagy blockade as a control to explore whether Xiaoyaosan exerts antidepressant effect by affecting autophagy. We examined the effects of Xiaoyaosan on behaviors exhibited during the open field test, tail suspension test and sucrose preference test, and the changes in autophagy in hypothalamic neurons as well as changes in GLUT4 and the related indicators of glucose metabolism in CUMS-induced depressive mouse model. We found that CUMS- and 3-MA-induced mice exhibited depressive-like behavioral changes, with decreased LC3 expression and increased p62 expression, suggesting decreased levels of autophagy in the mouse hypothalamus. The expression of GLUT4 was also decreased, and it was closely related to the level of autophagy through Rab8 and Rab10. Nevertheless, after the intervention of Xiaoyaosan, the above changes were effectively reversed. These results show that Xiaoyaosan can regulate the autophagy in hypothalamic neurons and the expression of GLUT4 in depressed mice.
Collapse
Affiliation(s)
- Fu-Rong Yang
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
| | - Xiao-Xu Zhu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Ming-Wang Kong
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-Juan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| |
Collapse
|
5
|
Chen KR, Wang HY, Liao YH, Sun LH, Huang YH, Yu L, Kuo PL. Effects of Septin-14 Gene Deletion on Adult Cognitive/Emotional Behavior. Front Mol Neurosci 2022; 15:880858. [PMID: 35571367 PMCID: PMC9100402 DOI: 10.3389/fnmol.2022.880858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
While various septin GTPases have been reported for their physiological functions, their roles in orchestrating complex cognitive/emotional functions in adult mammals remained scarcely explored. A comprehensive behavioral test battery was administered to two sexes of 12-week-old Septin-14 (SEPT14) knockout (KO) and wild-type (WT) mice. The sexually dimorphic effects of brain SEPT14 KO on inhibitory avoidance (IA) and hippocampal mGluR5 expression were noticed with greater IA latency and elevated mGluR5 level exclusively in male KO mice. Moreover, SEPT14 KO appeared to be associated with stress-provoked anxiety increase in a stress-related navigation task regardless of animals’ sexes. While male and female WT mice demonstrated comparable cell proliferation in the dorsal and ventral hippocampal dentate gyrus (DG), both sexes of SEPT14 KO mice had increased cell proliferation in the ventral DG. Finally, male and female SEPT14 KO mice displayed dampened observational fear conditioning magnitude and learning-provoked corticosterone secretion as compared to their same-sex WT mice. These results, taken together, prompt us to conclude that male, but not female, mice lacking the Septin-14 gene may exhibit increased aversive emotion-related learning and dorsal/ventral hippocampal mGluR5 expressions. Moreover, deletion of SEPT14 may be associated with elevated ventral hippocampal DG cell proliferation and stress-provoked anxiety-like behavior, while dampening vicarious fear conditioning magnitudes.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Han-Yu Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yi-Han Liao
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Li-Han Sun
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-Han Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Lung Yu,
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- *Correspondence: Pao-Lin Kuo,
| |
Collapse
|