1
|
Vincent KF, Zhang ER, Cho AJ, Kato-Miyabe R, Mallari OG, Moody OA, Obert DP, Park GH, Solt K. Electrical stimulation of the ventral tegmental area restores consciousness from sevoflurane-, dexmedetomidine-, and fentanyl-induced unconsciousness in rats. Brain Stimul 2024; 17:687-697. [PMID: 38821397 PMCID: PMC11212499 DOI: 10.1016/j.brs.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Dopaminergic neurons in the ventral tegmental area (VTA) are crucially involved in regulating arousal, making them a potential target for reversing general anesthesia. Electrical deep brain stimulation (DBS) of the VTA restores consciousness in animals anesthetized with drugs that primarily enhance GABAA receptors. However, it is unknown if VTA DBS restores consciousness in animals anesthetized with drugs that target other receptors. OBJECTIVE To evaluate the efficacy of VTA DBS in restoring consciousness after exposure to four anesthetics with distinct receptor targets. METHODS Sixteen adult Sprague-Dawley rats (8 female, 8 male) with bipolar electrodes implanted in the VTA were exposed to dexmedetomidine, fentanyl, ketamine, or sevoflurane to produce loss of righting, a proxy for unconsciousness. After receiving the dopamine D1 receptor antagonist, SCH-23390, or saline (vehicle), DBS was initiated at 30 μA and increased by 10 μA until reaching a maximum of 100 μA. The current that evoked behavioral arousal and restored righting was recorded for each anesthetic and compared across drug (saline/SCH-23390) condition. Electroencephalogram, heart rate and pulse oximetry were recorded continuously. RESULTS VTA DBS restored righting after sevoflurane, dexmedetomidine, and fentanyl-induced unconsciousness, but not ketamine-induced unconsciousness. D1 receptor antagonism diminished the efficacy of VTA stimulation following sevoflurane and fentanyl, but not dexmedetomidine. CONCLUSIONS Electrical DBS of the VTA restores consciousness in animals anesthetized with mechanistically distinct drugs, excluding ketamine. The involvement of the D1 receptor in mediating this effect is anesthetic-specific.
Collapse
Affiliation(s)
- Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Angel J Cho
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Risako Kato-Miyabe
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Olivia G Mallari
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - David P Obert
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Gwi H Park
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Wasilczuk AZ, Rinehart C, Aggarwal A, Stone ME, Mashour GA, Avidan MS, Kelz MB, Proekt A, ReCCognition Study Group. Hormonal basis of sex differences in anesthetic sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2312913120. [PMID: 38190526 PMCID: PMC10801881 DOI: 10.1073/pnas.2312913120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Collapse
Affiliation(s)
- Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Cole Rinehart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Adeeti Aggarwal
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - Martha E. Stone
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Michael S. Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - ReCCognition Study Group
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Opfermann P, Schmid W, Obradovic M, Kraft F, Zadrazil M, Marhofer D, Marhofer P. Sex differences in pediatric caudal epidural anesthesia under sedation without primary airway instrumentation. PLoS One 2023; 18:e0288431. [PMID: 37440538 DOI: 10.1371/journal.pone.0288431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
STUDY OBJECTIVE To identify sex differences associated with caudal epidurals, the most commonly used technique of pediatric regional anesthesia, based on individually validated data of ultrasound-guided blocks performed between 04/2014 and 12/2020. METHODS Prospectively collected and individually validated data of a cohort of children aged between 0-15 years was analyzed in a retrospective observational study. We included pediatric surgeries involving a primary plan of caudal epidural anesthesia under sedation (without airway instrumentation) and a contingency plan of general anesthesia. Sex-specific rates were analyzed for overall failure of the primary anesthesia plan, for residual pain, for block-related technical complications and for critical respiratory events. We used Fisher´s exact tests and multivariable logistic regressions were used to evaluate sex-specific associations. RESULTS Data from 487 girls and 2060 boys ≤15 years old (ASA status 1 to 4) were analyzed. The primary-anesthesia-plan failure rate was 5.5% (95%CI 3.8%-7.8%) (N = 27/487) among girls and 4.7% (95%CI 3.9%-5.7%) (N = 97/2060) among boys (p = 0.41). Residual pain was the main cause of failure, with rates of 4.5% (95%CI 2.9-6.6%) (N = 22/487) among girls and 3.0% (95%CI 2.3-3.8%) (N = 61/2060) among boys (p = 0.089). Block-related technical complications were seen at rates of 0.8% (95%CI 0.3%-1.9%) (N = 4/487) among girls vs 2.5% (95%CI 0.5-2.7%) (N = 51/2060) among boys and, hence, significantly more often among male patients (p = 0.023). Male sex was significantly associated with higher odds (adjusted OR: 3.18; 95% CI: 1.12-9; p = 0.029) for such technical complications regardless of age, ASA status, gestational week at birth or puncture attempts. Critical respiratory events occurred at a 1.7% (95%CI 1.2%-2.3%) rate (N = 35/2060) twice as high among boys as 0.8% (95%CI 0.3%-1.9%) (N = 4/487) among girls (p = 0.21). CONCLUSIONS While the the primary-anesthesia-plan failure rate was equal for girls and boys, technical complications and respiratory events are more likely to occur in boys.
Collapse
Affiliation(s)
- Philipp Opfermann
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| | - Werner Schmid
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| | - Mina Obradovic
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| | - Felix Kraft
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| | - Markus Zadrazil
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| | - Daniela Marhofer
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| | - Peter Marhofer
- Department of Anesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna,Vienna, Austria
| |
Collapse
|
4
|
Vincent KF, Mallari OG, Dillon EJ, Stewart VG, Cho AJ, Dong Y, Edlow AG, Ichinose F, Xie Z, Solt K. Oestrous cycle affects emergence from anaesthesia with dexmedetomidine, but not propofol, isoflurane, or sevoflurane, in female rats. Br J Anaesth 2023; 131:67-78. [PMID: 37142466 PMCID: PMC10308440 DOI: 10.1016/j.bja.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Although sex differences in anaesthetic sensitivity have been reported, what underlies these differences is unknown. In rodents, one source of variability in females is the oestrous cycle. Here we test the hypothesis that the oestrous cycle impacts emergence from general anaesthesia. METHODS Time to emergence was measured after isoflurane (2 vol% for 1 h), sevoflurane (3 vol% for 20 min), dexmedetomidine (50 μg kg-1 i.v., infused over 10 min), or propofol (10 mg kg-1 i.v. bolus) during proestrus, oestrus, early dioestrus, and late dioestrus in female Sprague-Dawley rats (n=24). EEG recordings were taken during each test for power spectral analysis. Serum was analysed for 17β-oestradiol and progesterone concentrations. The effect of oestrous cycle stage on return of righting latency was assessed using a mixed model. The association between righting latency and serum hormone concentration was tested by linear regression. Mean arterial blood pressure and arterial blood gases were assessed in a subset of rats after dexmedetomidine and compared in a mixed model. RESULTS Oestrous cycle did not affect righting latency after isoflurane, sevoflurane, or propofol. When in the early dioestrus stage, rats emerged more rapidly from dexmedetomidine than in the proestrus (P=0.0042) or late dioestrus (P=0.0230) stage and showed reduced overall power in frontal EEG spectra 30 min after dexmedetomidine (P=0.0049). 17β-Oestradiol and progesterone serum concentrations did not correlate with righting latency. Oestrous cycle did not affect mean arterial blood pressure or blood gases during dexmedetomidine. CONCLUSIONS In female rats, the oestrous cycle significantly impacts emergence from dexmedetomidine-induced unconsciousness. However, 17β-oestradiol and progesterone serum concentrations do not correlate with the observed changes.
Collapse
Affiliation(s)
- Kathleen F Vincent
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Olivia G Mallari
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Emmaline J Dillon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Brigham Young University, Provo, UT, USA
| | - Victoria G Stewart
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Brigham Young University, Provo, UT, USA
| | - Angel J Cho
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Touro College of Osteopathic Medicine, New York, NY, USA
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|