1
|
Schimmelpfennig J, Jankowiak-Siuda K. Exploring DMT: Endogenous role and therapeutic potential. Neuropharmacology 2025; 268:110314. [PMID: 39832530 DOI: 10.1016/j.neuropharm.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
N,N-Dimethyltryptamine (DMT) is a naturally occurring amine and psychedelic compound, found in plants, animals, and humans. While initial studies reported only trace amounts of DMT in mammalian brains, recent findings have identified alternative methylation pathways and DMT levels comparable to classical neurotransmitters in rodent brains, calling for a re-evaluation of its biological role and exploration of this inconsistency. This study evaluated DMT's biosynthetic pathways, focusing on indolethylamine N-methyltransferase (INMT) and its isoforms, and possible regulatory mechanisms, including alternative routes of synthesis and how physiological conditions, such as stress and hypoxia influence DMT levels. This review considers the impact of endogenous regulatory factors on DMT synthesis and degradation, particularly under conditions affecting monoamine oxidase (MAO) efficiency and activity. We also examined DMT's potential roles in various physiological processes, including neuroplasticity and neurogenesis, mitochondrial homeostasis, immunomodulation, and protection against hypoxia and oxidative stress. DMT's lipophilic properties allow it to cross cell membranes and activate intracellular 5-HT2A receptors, contributing to its role in neuroplasticity. This suggests DMT may act as an endogenous ligand for intracellular receptors, highlighting its broader biological significance beyond traditional receptor pathways. The widespread evolutionary presence of DMT's biosynthetic pathways across diverse species suggests it may play essential roles in various developmental stages and cellular adaptation to environmental challenges, highlighting the neurobiological significance of DMT and its potential clinical applications. We propose further research to explore the role of endogenous DMT, particularly as a potential neurotransmitter.
Collapse
|
2
|
Jarnda KV, Dai H, Ali A, Bestman PL, Trafialek J, Roberts-Jarnda GP, Anaman R, Kamara MG, Wu P, Ding P. A Review on Optical Biosensors for Monitoring of Uric Acid and Blood Glucose Using Portable POCT Devices: Status, Challenges, and Future Horizons. BIOSENSORS 2025; 15:222. [PMID: 40277536 PMCID: PMC12025047 DOI: 10.3390/bios15040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
The growing demand for real-time, non-invasive, and cost-effective health monitoring has driven significant advancements in portable point-of-care testing (POCT) devices. Among these, optical biosensors have emerged as promising tools for the detection of critical biomarkers such as uric acid (UA) and blood glucose. Different optical transduction methods, like fluorescence, surface plasmon resonance (SPR), and colorimetric approaches, are talked about, with a focus on how sensitive, specific, and portable they are. Despite considerable advancements, several challenges persist, including sensor stability, miniaturization, interference effects, and the need for calibration-free operation. This review also explores issues related to cost-effectiveness, data integration, and wireless connectivity for remote monitoring. The review further examines regulatory considerations and commercialization aspects of optical biosensors, addressing the gap between research developments and clinical implementation. Future perspectives emphasize the integration of artificial intelligence (AI) and healthcare for improved diagnostics, alongside the development of wearable and implantable biosensors for continuous monitoring. Innovative optical biosensors have the potential to change the way people manage their health by quickly and accurately measuring uric acid and glucose levels. This is especially true as the need for decentralized healthcare solutions grows. By critically evaluating existing work and exploring the limitations and opportunities in the field, this review will help guide the development of more efficient, accessible, and reliable POCT devices that can improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Kermue Vasco Jarnda
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Heng Dai
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 St., 02776 Warsaw, Poland; (A.A.); (J.T.)
| | - Prince L. Bestman
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
| | - Joanna Trafialek
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 St., 02776 Warsaw, Poland; (A.A.); (J.T.)
| | | | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China;
| | - Mohamed Gbanda Kamara
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| |
Collapse
|
3
|
Shiplett A, Mathias J. A Rare Case of Metformin-Induced Lactic Acidosis and Concomitant Euglycemic Ketoacidosis. Cureus 2024; 16:e73708. [PMID: 39677160 PMCID: PMC11646140 DOI: 10.7759/cureus.73708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Acidemia arises primarily from the accumulation of carbon dioxide or the loss of bicarbonate, leading to a pH decrease within the body, which can be fatal if severe and not promptly addressed. Metabolic acidemia occurs due to a loss of bicarbonate and can manifest through direct losses of bicarbonate via renal or gastrointestinal routes, or through the accumulation of anions such as lactic acid or ketoacids, leading to an anion gap metabolic acidosis. Many common etiologies for lactic acid and ketoacid generation exist, including medication-induced causes. Metformin-induced lactic acidemia is a well-known, yet rare, complication of metformin usage, but metformin-induced ketoacidemia is not well described. This report presents a case involving a patient with end-stage renal disease (ESRD) who, while taking metformin, developed severe anion gap metabolic acidosis with undetectably high levels of lactic acid and ketones, supporting the potential role of metformin in inducing severe lactic acidosis and ketoacidosis.
Collapse
Affiliation(s)
- Alex Shiplett
- Internal Medicine, Wright State University, Dayton, USA
| | - Jay Mathias
- Internal Medicine, Wright State University, Dayton, USA
| |
Collapse
|
4
|
Park M, Cave G, Freebairn R. Metabolic acidosis in anaesthesia and critical care. BJA Educ 2024; 24:91-99. [PMID: 38375495 PMCID: PMC10874758 DOI: 10.1016/j.bjae.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- M.A.J. Park
- Te Matau a Maui Hawke's Bay, Health New Zealand, Hastings, New Zealand
| | - G. Cave
- Te Matau a Maui Hawke's Bay, Health New Zealand, Hastings, New Zealand
| | - R.C. Freebairn
- Te Matau a Maui Hawke's Bay, Health New Zealand, Hastings, New Zealand
| |
Collapse
|
5
|
Park M, Sidebotham D. Metabolic alkalosis and mixed acid-base disturbance in anaesthesia and critical care. BJA Educ 2023; 23:128-135. [PMID: 36960435 PMCID: PMC10028421 DOI: 10.1016/j.bjae.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- M. Park
- Te Matau a Maui Hawke's Bay, Hastings, New Zealand
| | | |
Collapse
|