1
|
Islam MR, Rauf A, Akash S, Sharker M, Mahreen M, Munira MAK, Dhar PS, Hemeg HA, Iriti M, Imran M. Targeted therapeutic management based on phytoconstituents for sickle cell anemia focusing on molecular mechanisms: Current trends and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155936. [PMID: 39128304 DOI: 10.1016/j.phymed.2024.155936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/28/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The global epidemic of Sickle cell anemia (SCA) is causing thousands of children to die. SCA, a genetic disorder affecting the hemoglobin-globin chain, affects millions globally. The primary physiological issue in these patients is the polymerization of sickle hemoglobin within their red blood cells (RBCs) during their deoxygenating state. The RBC undergoes a sickle shape due to the polymerization of mutant hemoglobin within it and membrane deformation during anoxic conditions. To prevent complications, it is essential to effectively stop the sickling of RBCs of the patients. Various medications have been studied for treating SCA patients, focusing on antisickling, γ-globulin induction, and antiplatelet action. Natural and synthetic anti-sickling agents can potentially reduce patient clinical morbidity. Numerous clinical trials focused on using natural remedies for the symptomatic therapy of SCA. Medicinal plants and phytochemical agents have antisickling properties. Recent studies on plant extracts' natural compounds have primarily focused on in vitro RBCs sickling studies, with limited data on in vivo studies. This review discussed the potential role of phytoconstituents in the management of SCA.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muntasir Sharker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mashiat Mahreen
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Most Ayesha Khatun Munira
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawara, Saudi Arabia
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Correia JJ, Stafford WF, Erlandsen H, Cole JL, Premathilaka SH, Isailovic D, Dignam JD. Hydrodynamic and thermodynamic analysis of PEGylated human serum albumin. Biophys J 2024; 123:2506-2521. [PMID: 38898654 PMCID: PMC11365110 DOI: 10.1016/j.bpj.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Covalent labeling of therapeutic drugs and proteins with polyethylene glycol (PEGylation) is an important modification for improving stability, solubility, and half-life. PEGylation alters protein solution behavior through its impact on thermodynamic nonideality by increasing the excluded volume, and on hydrodynamic nonideality by increasing the frictional drag. To understand PEGylation's impact, we investigated the thermodynamic and hydrodynamic properties of a model system consisting of PEGylated human serum albumin derivatives using analytical ultracentrifugation (AUC) and dynamic light scattering (DLS). We constructed PEGylated human serum albumin derivatives of single, linear 5K, 10K, 20K, and 40K PEG chains and a single branched-chain PEG of 40K (2 × 20K). Sedimentation velocity (SV) experiments were analyzed using SEDANAL direct boundary fitting to extract ideal sedimentation coefficients so, hydrodynamic nonideality ks, and thermodynamic nonideality 2BM1SV terms. These quantities allow the determination of the Stokes radius Rs, the frictional ratio f/fo, and the swollen or entrained volume Vs/v, which measure size, shape, and solvent interaction. We performed sedimentation equilibrium experiments to obtain independent measurements of thermodynamic nonideality 2BM1SE. From DLS measurements, we determined the interaction parameter, kD, the concentration dependence of the apparent diffusion coefficient, D, and from extrapolation of D to c = 0 a second estimate of Rs. Rs values derived from SV and DLS measurements and ensemble model calculations (see complementary study) are then used to show that ks + kD = theoretical 2B22M1. In contrast, experimental BM1 values from SV and sedimentation equilibrium data collectively allow for similar analysis for protein-PEG conjugates and show that ks + kD = 1.02-1.07∗BM1, rather than the widely used ks + kD = 2BM1 developed for hard spheres. The random coil behavior of PEG dominates the colloidal properties of PEG-protein conjugates and exceeds the sum of a random coil and hard-sphere volume due to excess entrained water.
Collapse
Affiliation(s)
- John J Correia
- Department of Cell & Molecular Biology, University of Miss Medical Center, Jackson, Mississippi.
| | - Walter F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Heidi Erlandsen
- Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | | | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio
| | - John David Dignam
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio
| |
Collapse
|
3
|
Mehrizi TZ, Mirzaei M, Ardestani MS. Pegylation, a Successful Strategy to Address the Storage and Instability Problems of Blood Products: Review 2011-2021. Curr Pharm Biotechnol 2024; 25:247-267. [PMID: 37218184 DOI: 10.2174/1389201024666230522091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 05/24/2023]
Abstract
Conjugation of polyethylene glycol (PEGylation) to blood proteins and cells has emerged as a successful approach to address some of the issues attributed to the storage of blood products, including their short half-life and instability. In this regard, this review study aims to compare the influence of different PEGylation strategies on the quality of several blood products like red blood cells (RBCs), platelets, plasma proteins, i.e., albumin, coagulation factor VIII, and antibodies. The results indicated that conjugating succinimidyl carbonate methoxyPEG (SCmPEG) to platelets could improve blood transfusion safety by preventing these cells from being attached to low-load hidden bacteria in blood products. Moreover, coating of 20 kD succinimidyl valerate (SVA)-mPEG to RBCs was able to extend the half-life and stability of these cells during storage, as well as immune camouflage their surface antigens to prevent alloimmunisation. As regards albumin products, PEGylation improved the albumin stability, especially during sterilization, and there was a relationship between the molecular weight (MW) of PEG molecules and the biological half-life of the conjugate. Although coating antibodies with short-chain PEG molecules could enhance their stabilities, these modified proteins were cleared from the blood faster. Also, branched PEG molecules enhanced the retention and shielding of the fragmented and bispecific antibodies. Overall, the results of this literature review indicate that PEGylation can be considered a useful tool for enhancing the stability and storage of blood components.
Collapse
Affiliation(s)
| | - Mehdi Mirzaei
- Iran Ministry of Health and Medical Education, Deputy Ministry for Education, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Inusa BP, Atoyebi W, Andemariam B, Hourani JN, Omert L. Global burden of transfusion in sickle cell disease. Transfus Apher Sci 2023; 62:103764. [PMID: 37541800 DOI: 10.1016/j.transci.2023.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023]
Abstract
Sickle cell disease (SCD) is the most common hereditary hemoglobinopathy. The underlying pathophysiology of the red blood cell (RBC) leads to pan-systemic complications which manifest at an early age. While curative and disease-modifying treatments exist for SCD, a key intervention in the management and treatment of SCD is RBC transfusion, which can alleviate or prevent many complications. SCD patients often require chronic RBC transfusion therapy which can result in complications, such as iron overload, alloimmunization and infection. In low- and middle-income countries (LMICs), SCD patients lack appropriate access to healthcare such as newborn screening, health education, prophylaxis for infection, and treatments to reduce both mortality and SCD-related adverse effects. Poor access to RBCs for transfusion, coupled with donated blood not meeting safety standards set by the World Health Organization, presents a significant barrier for patients requiring chronic transfusions in LMICs. Unmet needs associated with blood collection, blood component processing and recipient matching all pose a serious problem in many LMICs, although this varies depending on geographic location, political organizations and economy. This review aims to provide an overview of the global burden of SCD, focusing on the availability of current treatments and the burden of chronic RBC transfusions in patients with SCD.
Collapse
Affiliation(s)
- Baba Pd Inusa
- Guy's and Saint Thomas' NHS Foundation Trust, London, UK.
| | | | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Farmington, CT, USA
| | | | | |
Collapse
|
5
|
Okamoto W, Hiwatashi Y, Kobayashi T, Morita Y, Onozawa H, Iwazaki M, Kohno M, Tomiyasu H, Tochinai R, Georgieva R, Bäumler H, Komatsu T. Poly(2-ethyl-2-oxazoline)-Conjugated Hemoglobins as a Red Blood Cell Substitute. ACS APPLIED BIO MATERIALS 2023; 6:3330-3340. [PMID: 37504970 DOI: 10.1021/acsabm.3c00392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Hemoglobin wrapped covalently with poly(2-ethyl-2-oxazoline)s (POx-Hb) is characterized physicochemically and physiologically as an artificial O2 carrier for use as a red blood cell (RBC) substitute. The POx-Hb is generated by linkage of porcine Hb surface-lysines to a sulfhydryl terminus of the POx derivative, with the average binding number of the polymers ascertained as 6. The POx-Hb shows moderately higher colloid osmotic activity and O2 affinity than the naked Hb. Human adult HbA conjugated with POx also possesses equivalent features and O2 binding properties. The POx-Hb solution exhibits good hemocompatibility, with no influence on the functions of platelets, granulocytes, and monocytes. Its circulation half-life in rats is 14 times longer than that of naked Hb. Hemorrhagic shock in rats is relieved sufficiently by infusion of the POx-Hb solution, as revealed by improvements of circulatory parameters. Serum biochemistry tests and histopathological observations indicate no acute toxicity or abnormality in the related organs. All results indicate that POx-Hb represents an attractive alternative for RBCs and a useful O2 therapeutic reagent in transfusion medicine.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuuki Hiwatashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tatsuhiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
6
|
Acharya B, Mishra DP, Barik B, Mohapatra RK, Sarangi AK. Recent progress in the treatment of sickle cell disease: an up-to-date review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:38. [DOI: 10.1186/s43088-023-00373-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/20/2023] [Indexed: 02/12/2025] Open
Abstract
Abstract
Background
Sickle cell disease is a fatal systemic condition characterized by acute painful episodes, persistent anemia, ongoing organ damage, organ infarction, and a markedly shorter average lifetime. It first appeared in the tropics' malarial zones, where carriers benefit from an evolutionary advantage by being shielded from malaria death.
Due to demographic shifts, this crisis now affects people all over the world. In higher-income areas, such as vast swaths of Europe and North and South America, more children are born with the syndrome.
Main body
Over the last 10 years, a clearer knowledge of the change from fetal to adult hemoglobin has evolved. Further investigation into chimerism, genomics, mixed gene editing, and therapeutic reactivation of fetal hemoglobin has produced very promising findings. Between 2017 and 2019, three innovative medications for sickle cell disease were approved by the FDA thanks to previous advances, while many more treatments are now under development.
Short conclusion
To improve patient outcomes, various innovative medications that were created in the late 1990s and utilized to treat sickle cell disease are examined in this study. In our appraisal, we'll also focus on the most important developments of the decade.
Collapse
|
7
|
Gao H, Peng H, Yang H, Li Q, Xiang X. Neurointerventional infusion of hemoglobin oxygen carrier prevents brain damage from acute cerebral ischemia in rats. Front Surg 2023; 10:1050935. [PMID: 36936654 PMCID: PMC10020359 DOI: 10.3389/fsurg.2023.1050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Aim To save brain cells in acute cerebral infarction by injecting hemoglobin oxygen carrier (HBOC) into the blood vessel blockage of the cerebral infarction site through a microcatheter. Methods 120 male rats were divided into four groups: control (CTRL), ischemia (I), ischemia + low perfusion (I + LP), and ischemia + high perfusion (I + HP). Perfusion groups (ischemia, I + LP, and I + HP) underwent MCAO surgery with intraluminal monofilament. These groups were subdivided into 6 h, 12 h, and 24 h (n = 10/group). RT-PCR, Western-Blot, immunohistochemistry, and apoptosis assays were used to detect apoptosis, hypoxia range and extent, and ischemia. Results Compared with the I group, the neurological deficit sign scores of the I + HP group were statistically significant at 12 h. Compared with the I group, the neurological deficit sign scores of the I + LP group and the I + HP group were statistically significant at 24 h. At all time points, compared with the I group and the I + LP group, Caspase-3, HIF-1α, and Cytochrome C protein levels were significantly decreased in the I + HP group. Bcl-2 and BAX mRNA levels were also significantly decreased in the same group. TNF-α, IL-6, and IL-1β cytokines were significantly decreased in the I + HP group as well. The infarct size of rats in the I + HP group was smaller than that of the I + LP group, which was smaller than ischemia alone. Time of perfusion had an obvious effect as infarct size was smaller with longer perfusion. The number of Nissl stained cells in the I + HP group was increased compared with the ischemia and the I + LP group, and was proportional to the time of perfusion. Conclusion Time- and rate-controlled perfusion of HBOC to acutely occluded cerebral vascular regions through microcatheters can effectively protect ischemic brain tissue in rats.
Collapse
Affiliation(s)
- Hong Gao
- Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Han Peng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qiuping Li
- Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xin Xiang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Correspondence: Xin Xiang
| |
Collapse
|
8
|
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the most common inherited diseases worldwide. It is associated with lifelong morbidity and a reduced life expectancy. Hydroxyurea (hydroxycarbamide), an oral chemotherapeutic drug, ameliorates some of the clinical problems of SCD, in particular that of pain, by raising foetal haemoglobin (HbF). This is an update of a previously published Cochrane Review. OBJECTIVES The aims of this review are to determine through a review of randomised or quasi-randomised studies whether the use of hydroxyurea in people with SCD alters the pattern of acute events, including pain; prevents, delays or reverses organ dysfunction; alters mortality and quality of life; or is associated with adverse effects. In addition, we hoped to assess whether the response to hydroxyurea in SCD varies with the type of SCD, age of the individual, duration and dose of treatment, and healthcare setting. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Haemoglobinopathies Register, comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also searched online trial registries. The date of the most recent search was 17 February 2022. SELECTION CRITERIA Randomised and quasi-randomised controlled trials (RCTs and quasi-RCTs), of one month or longer, comparing hydroxyurea with placebo or standard therapy in people with SCD. DATA COLLECTION AND ANALYSIS Authors independently assessed studies for inclusion, carried out data extraction, assessed the risk of bias and assessed the quality of the evidence using GRADE. MAIN RESULTS We included nine RCTs recruiting 1104 adults and children with SCD (haemoglobin SS (HbSS), haemoglobin SC (HbSC) or haemoglobin Sβºthalassaemia (HbSβºthal) genotypes). Studies lasted from six to 30 months. We judged the quality of the evidence for the first two comparisons below as moderate to low as the studies contributing to these comparisons were mostly large and well-designed (and at low risk of bias); however, the evidence was limited and imprecise for some outcomes such as quality of life, deaths during the studies and adverse events, and the results are applicable only to individuals with HbSS and HbSβºthal genotypes. We judged the quality of the evidence for the third and fourth comparisons to be very low due to the limited number of participants, the lack of statistical power (both studies were terminated early with approximately only 20% of their target sample size recruited) and the lack of applicability to all age groups and genotypes. Hydroxyurea versus placebo Five studies (784 adults and children with HbSS or HbSβºthal) compared hydroxyurea to placebo; four recruited individuals with only severe disease and one recruited individuals with all disease severities. Hydroxyurea probably improves pain alteration (using measures such as pain crisis frequency, duration, intensity, hospital admissions and opoid use) and life-threatening illness, but we found no difference in death rates (10 deaths occurred during the studies, but the rates did not differ by treatment group) (all moderate-quality evidence). Hydroxyurea may improve measures of HbF (low-quality evidence) and probably decreases neutrophil counts (moderate-quality evidence). There were no consistent differences in terms of quality of life and adverse events (including serious or life-threatening events) (low-quality evidence). There were fewer occurrences of acute chest syndrome and blood transfusions in the hydroxyurea groups. Hydroxyurea and phlebotomy versus transfusion and chelation Two studies (254 children with HbSS or HbSβºthal also with risk of primary or secondary stroke) contributed to this comparison. There were no consistent differences in terms of pain alteration, death or adverse events (low-quality evidence) or life-threatening illness (moderate-quality evidence). Hydroxyurea with phlebotomy probably increased HbF and decreased neutrophil counts (moderate-quality evidence), but there were more occurrences of acute chest syndrome and infections. Quality of life was not reported. In the primary prevention study, no strokes occurred in either treatment group but in the secondary prevention study, seven strokes occurred in the hydroxyurea and phlebotomy group (none in the transfusion and chelation group) and the study was terminated early. Hydroxyurea versus observation One study (22 children with HbSS or HbSβºthal also at risk of stoke) compared hydroxyurea to observation. Pain alteration and quality of life were not reported. There were no differences in life-threatening illness, death (no deaths reported in either group) or adverse events (very low-quality evidence). We are uncertain if hydroxyurea improves HbF or decreases neutrophil counts (very low-quality evidence). Treatment regimens with and without hydroxyurea One study (44 adults and children with HbSC) compared treatment regimens with and without hydroxyurea. Pain alteration, life-threatening illness and quality of life were not reported. There were no differences in death rates (no deaths reported in either group), adverse events or neutrophil levels (very low-quality evidence). We are uncertain if hydroxyurea improves HbF (very low-quality evidence). AUTHORS' CONCLUSIONS There is evidence to suggest that hydroxyurea may be effective in decreasing the frequency of pain episodes and other acute complications in adults and children with sickle cell anaemia of HbSS or HbSβºthal genotypes and in preventing life-threatening neurological events in those with sickle cell anaemia at risk of primary stroke by maintaining transcranial Doppler velocities. However, there is still insufficient evidence on the long-term benefits of hydroxyurea, particularly with regard to preventing chronic complications of SCD, or recommending a standard dose or dose escalation to maximum tolerated dose. There is also insufficient evidence about the long-term risks of hydroxyurea, including its effects on fertility and reproduction. Evidence is also limited on the effects of hydroxyurea on individuals with the HbSC genotype. Future studies should be designed to address such uncertainties.
Collapse
Affiliation(s)
- Angela E Rankine-Mullings
- Sickle Cell Unit, Caribbean Institute for Health Research, University of the West Indies, Kingston, Jamaica
| | - Sarah J Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
10
|
Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Exp Mol Med 2022; 54:639-652. [PMID: 35581352 PMCID: PMC9166813 DOI: 10.1038/s12276-022-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Overwhelming neutrophilic inflammation is a leading cause of lung damage in many pulmonary diseases, including cystic fibrosis (CF). The heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway mediates the resolution of inflammation and is defective in CF-affected macrophages (MΦs). Here, we provide evidence that systemic administration of PP-007, a CO releasing/O2 transfer agent, induces the expression of HO-1 in a myeloid differentiation factor 88 (MyD88) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)-dependent manner. It also rescues the reduced HO-1 levels in CF-affected cells induced in response to lipopolysaccharides (LPS) or Pseudomonas aeruginosa (PA). Treatment of CF and muco-obstructive lung disease mouse models with a single clinically relevant dose of PP-007 leads to effective resolution of lung neutrophilia and to decreased levels of proinflammatory cytokines in response to LPS. Using HO-1 conditional knockout mice, we show that the beneficial effect of PP-007 is due to the priming of circulating monocytes trafficking to the lungs in response to infection to express high levels of HO-1. Finally, we show that PP-007 does not compromise the clearance of PA in the setting of chronic airway infection. Overall, we reveal the mechanism of action of PP-007 responsible for the immunomodulatory function observed in clinical trials for a wide range of diseases and demonstrate the potential use of PP-007 in controlling neutrophilic pulmonary inflammation by promoting the expression of HO-1 in monocytes/macrophages. The activity of an enzyme that is significantly reduced in cystic fibrosis (CF) could be boosted by an existing drug, reducing lung inflammation and associated tissue damage. Chronic inflammation in CF is currently treated using long-term corticosteroids which may leave patients immuno-suppressed, or high-dose ibuprofen, which is not well tolerated. Scientists hope to find alternative therapies targeting chronic inflammation. Emanuela Bruscia, Caterina Di Pietro (Yale University, New Haven, USA) and co-workers examined the mechanisms of action of the first-in-class drug PP-007 (Prolong Pharmaceuticals®) and assessed its potential for controlling inflammation in CF. Patients with CF have reduced expression of the heme oxygenase-1 enzyme in immune cells called monocytes. In CF mouse models, treatment with PP-007 boosted the expression of this enzyme in circulating monocytes. The treatment reduced levels of proinflammatory proteins and associated lung damage.
Collapse
|
11
|
Okamoto W, Hasegawa M, Usui T, Kashima T, Sakata S, Hamano T, Onozawa H, Hashimoto R, Iwazaki M, Kohno M, Komatsu T. Hemoglobin-albumin clusters as an artificial O 2 carrier: Physicochemical properties and resuscitation from hemorrhagic shock in rats. J Biomed Mater Res B Appl Biomater 2022; 110:1827-1838. [PMID: 35191606 DOI: 10.1002/jbm.b.35040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
Abstract
A bovine hemoglobin (HbBv) or human adult hemoglobin (HbA) wrapped covalently by human serum albumins (HSAs), hemoglobin-albumin clusters (HbBv-HSA3 and HbA-HSA3 ), are artificial O2 carriers used as a red blood cell substitute. This article describes the physicochemical properties of the HbBv-HSA3 and HbA-HSA3 solutions, and their abilities to restore the systemic condition after resuscitation from hemorrhagic shock in anesthetized rats. The HbBv-HSA3 and HbA-HSA3 , which have high colloid osmotic activity, showed equivalent solution characteristics and O2 binding parameters. Shock was induced by 50% blood withdrawal. Rats exhibited hypotension and significant metabolic acidosis. After 15 min, the rats were administered shed autologous blood (SAB), HbBv-HSA3 , HbA-HSA3 , or Ringer's lactate (RL) solution. Survival rates, circulation parameters, hematological parameters, and blood gas parameters were monitored during the hemorrhagic shock and for 6 h after administration. All rats in the SAB, HbBv-HSA3 , and HbA-HSA3 groups survived for 6 h. The HbBv-HSA3 and HbA-HSA3 groups restored mean arterial pressure after the resuscitation. No remarkable difference was observed in the time courses of blood gas parameters in any resuscitated group except for the RL group. Serum biochemical tests showed increases in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the HbBv-HSA3 and HbA-HSA3 groups compared to the SAB group. Therefore, we observed other rats awakened after resuscitation with HbA-HSA3 for 7 days. The blood cell count, AST, and ALT recovered to the baseline values by 7 days. All the results implied that HbBv-HSA3 and HbA-HSA3 clusters provide restoration from hemorrhagic shock as an alternative material for SAB transfusion.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Mai Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomone Usui
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomonori Kashima
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Sho Sakata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tatsuhiko Hamano
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Ryo Hashimoto
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan.,Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
12
|
Faggiano S, Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S, Mozzarelli A. From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med 2021; 84:101050. [PMID: 34776270 DOI: 10.1016/j.mam.2021.101050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Hemoglobin (Hb) plays its vital role through structural and functional properties evolutionarily optimized to work within red blood cells, i.e., the tetrameric assembly, well-defined oxygen affinity, positive cooperativity, and heterotropic allosteric regulation by protons, chloride and 2,3-diphosphoglycerate. Outside red blood cells, the Hb tetramer dissociates into dimers, which exhibit high oxygen affinity and neither cooperativity nor allosteric regulation. They are prone to extravasate, thus scavenging endothelial NO and causing hypertension, and cause nephrotoxicity. In addition, they are more prone to autoxidation, generating radicals. The need to overcome the adverse effects associated with cell-free Hb has always been a major hurdle in the development of substitutes of allogeneic blood transfusions for all clinical situations where blood is unavailable or cannot be used due to, for example, religious objections. This class of therapeutics, indicated as hemoglobin-based oxygen carriers (HBOCs), is formed by genetically and/or chemically modified Hbs. Many efforts were devoted to the exploitation of the wealth of biochemical and biophysical information available on Hb structure, function, and dynamics to design safe HBOCs, overcoming the negative effects of free plasma Hb. Unfortunately, so far, no HBOC has been approved by FDA and EMA, except for compassionate use. However, the unmet clinical needs that triggered intensive investigations more than fifty years ago are still awaiting an answer. Recently, HBOCs "repositioning" has led to their successful application in organ perfusion fluids.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| |
Collapse
|
13
|
Microvascular and Systemic Impact of Resuscitation with PEGylated Carboxyhemoglobin-Based Oxygen Carrier or Hetastarch in a Rat Model of Transient Hemorrhagic Shock. Shock 2021; 53:493-502. [PMID: 31045989 DOI: 10.1097/shk.0000000000001370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hemorrhage is the leading cause of preventable, traumatic death. Currently, prehospital resuscitation fluids provide preload but not oxygen-carrying capacity-a critical blood function that mitigates microvascular ischemia and tissue hypoxia during hemorrhagic shock. Solutions containing polymerized hemoglobin have been associated with vasoactive and hypertensive events. A novel hemoglobin-based oxygen carrier, modified with PEGylation and CO moieties (PEG-COHb), may overcome these limitations. OBJECTIVES To evaluate the systemic and microcirculatory effects of PEG-COHb as compared with the 6% hetastarch in a rat model of hemorrhagic shock. METHODS Male Sprague Dawley rats (N = 20) were subjected to severe, controlled, hemorrhagic shock. Animals were randomized to 20% estimated blood-volume resuscitation with either 6% hetastarch or PEG-COHb. Continuous, invasive, cardiovascular measurements, and arterial blood gases were measured. Microcirculatory measurements of interstitial oxygenation (PISFO2) and vasoactivity helped model oxygen delivery in the spinotrapezius muscle using intravital and phosphorescence quenching microscopy. RESULTS Hemorrhage reduced mean arterial pressure (MAP), arteriolar diameter, and PISFO2, and increased lactate 10-fold in both groups. Resuscitation with both PEG-COHb and hetastarch improved cardiovascular parameters. However, PEG-COHb treatment resulted in higher MAP (P < 0.001), improved PISFO2 (14 [PEG-COHb] vs. 5 [hetastarch] mmHg; P < 0.0001), lower lactate post-resuscitation (P < 0.01), and extended survival from 90 to 142 min (P < 0.001) as compared with the hetastarch group. CONCLUSIONS PEG-COHb improved MAP PISFO2, lactate, and survival time as compared with 6% hetastarch resuscitation. Importantly, hypertension and vasoactivity were not detected in response to PEG-COHb resuscitation supporting further investigation of this resuscitation strategy.
Collapse
|
14
|
Rashid M, Kromah F, Cooper C. Blood transfusion and alternatives in Jehovah's Witness patients. Curr Opin Anaesthesiol 2021; 34:125-130. [PMID: 33577206 DOI: 10.1097/aco.0000000000000961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW More than 8.5 million people in the world observe the Jehovah's Witness faith, and require unique consideration for perioperative blood management as they generally refuse transfusion of blood and blood products. This review addresses a collaborative approach to each patient throughout the perioperative arena. The principles of this approach include optimization of hemoglobin levels preoperatively, attention to blood-salvaging methods intraoperatively, and minimization of blood draws postoperatively. In addition, we review the technologies currently in development as transfusion alternatives, including hemoglobin-based oxygen carriers. RECENT FINDINGS Progress has been made recently in the field of synthetic blood alternatives and hemoglobin-based oxygen carriers, which may lead to improved outcomes in this patient population. SUMMARY Utilization of multiple prevention and mitigation strategies to optimize oxygen supply and decrease oxygen demand will lead to decreased incidence of critical anemia and subsequent improved mortality in Jehovah's Witness patients.
Collapse
Affiliation(s)
| | | | - Catherine Cooper
- Division of Transplant Anesthesiology, Department of Anesthesiology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
Macko A, Sheppard FR, Nugent WH, Abuchowski A, Song BK. Improved Hemodynamic Recovery and 72-Hour Survival Following Low-Volume Resuscitation with a PEGylated Carboxyhemoglobin in a Rat Model of Severe Hemorrhagic Shock. Mil Med 2021; 185:e1065-e1072. [PMID: 32302002 DOI: 10.1093/milmed/usz472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/15/2019] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Hemorrhage is a leading cause of death from potentially survivable civilian and military trauma. As projected conflicts move from settings of tactical and logistical supremacy to hyper-dynamic tactical zones against peer and near-peer adversaries, protracted medical evacuation times are expected. Treatment at the point-of-injury is critical. Although crystalloids like Lactated Ringer's (LR) are ubiquitous, whole blood (WB) is the preferred resuscitation fluid following hemorrhage; however, logistical constraints limit the availability of WB in prehospital settings. Hemoglobin-based oxygen carriers (HBOCs) offer both hemodynamic support and oxygen-carrying capacity while avoiding logistical constraints of WB. We hypothesized that low-volume resuscitation of severe hemorrhagic shock with an HBOC (PEGylated carboxyhemoglobin, [PC]) would improve hemodynamic recovery and 72-hour survival; comparable to WB and superior to LR. MATERIALS AND METHODS A total of 21 anesthetized male Sprague-Dawley rats underwent severe hemorrhagic shock followed by randomly assigned low-volume resuscitation with LR, WB, or PC, and then recovered from anesthesia for up to 72-hour observation. Mean arterial pressure (MAP) was recorded continuously under anesthesia, and arterial blood gases were measured at baseline (BL), 60 minutes post-hemorrhage (HS1h), and 24 hours post-resuscitation (PR24h). Survival was presented on a Kaplan-Meier plot and significance determined with a log-rank test. Cardiovascular and blood gas data were assessed with one-way analysis of variance and post hoc analysis where appropriate. RESULTS All measured cardiovascular and blood chemistry parameters were equivalent between groups at BL and HS1h. BL MAP values were 90 ± 3, 86 ± 1, and 89 ± 2 mmHg for LR, PC, and WB, respectively. Immediately following resuscitation, MAP values were 57 ± 4, 74 ± 5, and 62 ± 3 mmHg, with PC equivalent to WB and higher than LR (P < 0.05). WB and LR were both lower than BL (P < 0.0001), whereas PC was not (P = 0.13). The PC group's survival to 72 hours was 57%, which was not different from WB (43%) and higher than LR (14%; P < 0.05). CONCLUSIONS A single bolus infusion of PC produced superior survival and MAP response compared to LR, which is the standard fluid resuscitant carried by combat medics. PC was not different from WB in terms of survival and MAP, which is encouraging because its reduced logistical constraints make it viable for field deployment. These promising findings warrant further development and investigation of PC as a low-volume, early treatment for hemorrhagic shock in scenarios where blood products may not be available.
Collapse
Affiliation(s)
- Antoni Macko
- Song Biotechnologies, 855 N Wolfe St., Suite 622, Baltimore, MD 21205 USA
| | - Forest R Sheppard
- Department of Surgery, Division of Acute Care Surgery, Maine Medical Center, 887 Congress St #400, Portland, ME 04102
| | - William H Nugent
- Song Biotechnologies, 855 N Wolfe St., Suite 622, Baltimore, MD 21205 USA
| | - Abe Abuchowski
- Prolong Pharmaceuticals, 300 Corporate Ct, South Plainfield, NJ 07080
| | - Bjorn K Song
- Song Biotechnologies, 855 N Wolfe St., Suite 622, Baltimore, MD 21205 USA
| |
Collapse
|
16
|
Gyamfi J, Ojo T, Epou S, Diawara A, Dike L, Adenikinju D, Enechukwu S, Vieira D, Nnodu O, Ogedegbe G, Peprah E. Evidence-based interventions implemented in low-and middle-income countries for sickle cell disease management: A systematic review of randomized controlled trials. PLoS One 2021; 16:e0246700. [PMID: 33596221 PMCID: PMC7888630 DOI: 10.1371/journal.pone.0246700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite ~90% of sickle cell disease (SCD) occurring in low-and middle-income countries (LMICs), the vast majority of people are not receiving evidence-based interventions (EBIs) to reduce SCD-related adverse outcomes and mortality, and data on implementation research outcomes (IROs) and SCD is limited. This study aims to synthesize available data on EBIs for SCD and assess IROs. METHODS We conducted a systematic review of RCTs reporting on EBIs for SCD management implemented in LMICs. We identified articles from PubMed/Medline, Global Health, PubMed Central, Embase, Web of Science medical subject heading (MeSH and Emtree) and keywords, published from inception through February 23, 2020, and conducted an updated search through December 24, 2020. We provide intervention characteristics for each study, EBI impact on SCD, and evidence of reporting on IROs. MAIN RESULTS 29 RCTs were analyzed. EBIs identified included disease modifying agents, supportive care agents/analgesics, anti-malarials, systemic treatments, patient/ provider education, and nutritional supplements. Studies using disease modifying agents, nutritional supplements, and anti-malarials reported improvements in pain crisis, hospitalization, children's growth and reduction in severity and prevalence of malaria. Two studies reported on the sustainability of supplementary arginine, citrulline, and daily chloroquine and hydroxyurea for SCD patients. Only 13 studies (44.8%) provided descriptions that captured at least three of the eight IROs. There was limited reporting of acceptability, feasibility, fidelity, cost and sustainability. CONCLUSION EBIs are effective for SCD management in LMICs; however, measurement of IROs is scarce. Future research should focus on penetration of EBIs to inform evidence-based practice and sustainability in the context of LMICs. CLINICAL TRIAL REGISTRATION This review is registered in PROSPERO #CRD42020167289.
Collapse
Affiliation(s)
- Joyce Gyamfi
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
| | - Temitope Ojo
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, New York, New York, United States of America
| | - Sabrina Epou
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
| | - Amy Diawara
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
| | - Lotanna Dike
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
| | - Deborah Adenikinju
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
| | - Scholastica Enechukwu
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
| | - Dorice Vieira
- New York University Health Sciences Library, New York, New York, United States of America
| | - Obiageli Nnodu
- Centre of Excellence for Sickle Cell Disease Research & Training (CESRTA), University of Abuja, Abuja, Nigeria
| | - Gbenga Ogedegbe
- Department of Population Health, New York University Medical Center, New York, New York, United States of America
| | - Emmanuel Peprah
- Global Health Program, New York University School of Global Public Health, New York, New York, United States of America
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, New York, New York, United States of America
| |
Collapse
|
17
|
Jahr JS, Guinn NR, Lowery DR, Shore-Lesserson L, Shander A. Blood Substitutes and Oxygen Therapeutics: A Review. Anesth Analg 2021; 132:119-129. [PMID: 30925560 DOI: 10.1213/ane.0000000000003957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the exhaustive search for an acceptable substitute to erythrocyte transfusion, neither chemical-based products such as perfluorocarbons nor hemoglobin-based oxygen carriers have succeeded in providing a reasonable alternative to allogeneic blood transfusion. However, there remain scenarios in which blood transfusion is not an option, due to patient's religious beliefs, inability to find adequately cross-matched erythrocytes, or in remote locations. In these situations, artificial oxygen carriers may provide a mortality benefit for patients with severe, life-threatening anemia. This article provides an up-to-date review of the history and development, clinical trials, new technology, and current standing of artificial oxygen carriers as an alternative to transfusion when blood is not an option.
Collapse
Affiliation(s)
- Jonathan S Jahr
- From the David Geffen School of Medicine at University of California Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Nicole R Guinn
- Department of Anesthesiology, Center for Blood Conservation Duke University Medical Center, Durham, North Carolina
| | - David R Lowery
- US Military, San Antonio, Texas.,Department of Anesthesiology, Uniformed Services University of the Health Sciences, San Antonio Military Medical Center, San Antonio, Texas
| | | | - Aryeh Shander
- Department of Anesthesiology, Critical Care and Hyperbaric Medicine, Englewood Hospital and Medical Center, Englewood, New Jersey.,TeamHealth Research Institute, Englewood Hospital and Medical Center, Englewood, New Jersey
| |
Collapse
|
18
|
Taguchi K, Maruyama T, Otagiri M. Use of Hemoglobin for Delivering Exogenous Carbon Monoxide in Medicinal Applications. Curr Med Chem 2020; 27:2949-2963. [PMID: 30421669 DOI: 10.2174/0929867325666181113122340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/25/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
Carbon Monoxide (CO), at low concentrations, can have a variety of positive effects on the body including anti-apoptosis, anti-inflammatory, anti-oxidative and anti-proliferative effects. Although CO has great potential for use as a potent medical bioactive gas, for it to exist in the body in stable form, it must be associated with a carrier. Hemoglobin (Hb) represents a promising material for use as a CO carrier because most of the total CO in the body is stored associated with Hb in red blood cells (RBC). Attempts have been made to develop an Hb-based CO carrying system using RBC and Hb-based artificial oxygen carriers. Some of these have been reported to be safe and to have therapeutic value as a CO donor in preclinical and clinical studies. In the present review, we overview the potential of RBC and Hb-based artificial oxygen carriers as CO carriers based on the currently available literature evidence for their use in pharmaceutical therapy against intractable disorders.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| |
Collapse
|
19
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Abstract
Sickle cell disease (SCD) afflicts millions of people worldwide but is referred to as an orphan disease in the United States. Over the past several decades, there has been an increasing understanding of the pathophysiology of SCD and its complications. While most individuals with SCD in resource-rich countries survive into adulthood, the life expectancy of patients with SCD remains substantially shorter than for the general African-American population. SCD can be cured using hematopoietic stem cell transplantation and possibly gene therapy, but these treatment approaches are not available to most patients, the majority of whom reside in low- and middle-income countries. Until relatively recently, only one drug, hydroxyurea, was approved by the US Food and Drug Administration to ameliorate disease severity. Multiple other drugs (L-glutamine, crizanlizumab, and voxelotor) have recently been approved for the treatment of SCD, with several others at various stages of clinical testing. The availability of multiple agents to treat SCD raises questions related to the choice of appropriate drug therapy, combination of multiple agents, and affordability of recently approved products. The enthusiasm for new drug development provides opportunities to involve patients in low- and middle-income nations in the testing of potentially disease-modifying therapies and has the potential to contribute to capacity building in these environments. Demonstration that these agents, alone or in combination, can prevent or decrease end-organ damage would provide additional evidence for the role of drug therapies in improving outcomes in SCD.
Collapse
Affiliation(s)
- Parul Rai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kenneth I. Ataga
- Center for Sickle Cell Disease, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
21
|
Estcourt LJ, Kimber C, Hopewell S, Trivella M, Doree C, Abboud MR. Interventions for preventing silent cerebral infarcts in people with sickle cell disease. Cochrane Database Syst Rev 2020; 4:CD012389. [PMID: 32250453 PMCID: PMC7134371 DOI: 10.1002/14651858.cd012389.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 14 November 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 07 October 2019. SELECTION CRITERIA Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. MAIN RESULTS We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention. Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents). The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence). No deaths were reported in either trial. Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence). Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial) Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence). We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence). The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence). Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence). Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD. Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises). In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions. Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention. All other evidence in this review is of very low-quality.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | | | - Sally Hopewell
- University of OxfordNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Botnar Research Centre, Windmill RoadOxfordOxfordshireUKOX3 7LD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Miguel R Abboud
- American University of Beirut Medical CenterDepartment of Pediatrics and Adolescent MedicineBeirutLebanon
| | | |
Collapse
|
22
|
Abstract
Despite sickle cell disease (SCD) being the most common and severe inherited condition worldwide, therapeutic options are limited. To date, hydroxyurea remains the main treatment option in SCD. However, in the last decade the numbers of interventional clinical trials focussing on therapies for SCD have increased significantly. Many new drugs with various pharmacological targets have emerged and, although the majority have failed to show benefit in clinical trials, some have produced encouraging results. It seems probable that more drugs will soon become available for the treatment of SCD. Furthermore, promising clinical trials with improved outcomes have recently changed the perspective of curative therapies in SCD. Nevertheless, the application of novel therapeutic agents and potential curative treatments will most likely be limited to high-income countries and, thus, will remain unavailable for the majority of people with SCD in the foreseeable future.
Collapse
Affiliation(s)
- Amina Nardo-Marino
- Centre for Haemoglobinopathies, Department of Haematology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Valentine Brousse
- Sickle Cell Disease Reference Center, Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - David Rees
- Department of Haematological Medicine, King's College London, King's College Hospital, London, UK
| |
Collapse
|
23
|
Abstract
OBJECTIVES We discuss two main categories of blood substitutes: perfluorocarbons and hemoglobin-based oxygen carriers. METHODS We provide a review of the notable products developed in both categories and include their attributes as well as their setbacks. RESULTS We contribute a case report tothe growing literature of the successful use of Sanguinate. CONCLUSIONS We find that artificial oxygen carriers are an attractive field of research because of the practical limitations and the multitude of potential complications that surround human blood transfusions.
Collapse
Affiliation(s)
- Sara Emily Bachert
- Department of Pathology and Laboratory Medicine, University of of Kentucky Medical Center, Lexington
| | - Prerna Dogra
- Department of Medicine, University of Kentucky, Lexington
| | - Leonard I Boral
- Department of Pathology and Laboratory Medicine, University of of Kentucky Medical Center, Lexington
| |
Collapse
|
24
|
Pharmacology and perspectives in erectile dysfunction in man. Pharmacol Ther 2020; 208:107493. [PMID: 31991196 DOI: 10.1016/j.pharmthera.2020.107493] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
Penile erection is a perfect example of microcirculation modulated by psychological factors and hormonal status. It is the result of a complex neurovascular process that involves the integrative synchronized action of vascular endothelium; smooth muscle; and psychological, neuronal, and hormonal systems. Therefore, the fine coordination of these events is essential to maintain penile flaccidity or allow erection; an alteration of these events leads to erectile dysfunction (ED). ED is defined as the consistent or recurrent inability of a man to attain and/or maintain a penile erection sufficient for sexual activity. A great boost to this research field was given by commercialization of phosphodiesterase-5 (PDE5) inhibitors. Indeed, following the discovery of sildenafil, research on the mechanisms underlying penile erection has had an enormous boost, and many preclinical and clinical papers have been published in the last 10 years. This review is structured to provide an overview of the mediators and peripheral mechanism(s) involved in penile function in men, the drugs used in therapy, and the future prospective in the management of ED. Indeed, 30% of patients affected by ED are classified as "nonresponders," and there is still an unmet need for therapeutic alternatives. A flowchart suggesting the guidelines for ED evaluation and the ED pharmacological treatment is also provided.
Collapse
|
25
|
Tan GM, Guinn NR, Frank SM, Shander A. Proceedings From the Society for Advancement of Blood Management Annual Meeting 2017: Management Dilemmas of the Surgical Patient-When Blood Is Not an Option. Anesth Analg 2019; 128:144-151. [PMID: 29958216 DOI: 10.1213/ane.0000000000003478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vigilance is essential in the perioperative period. When blood is not an option for the patient, especially in a procedure/surgery that normally holds a risk for blood transfusion, complexity is added to the management. Current technology and knowledge has made avoidance of blood transfusion a realistic option but it does require a concerted patient-centered effort from the perioperative team. In this article, we provide suggestions for a successful, safe, and bloodless journey for patients. The approaches include preoperative optimization as well as intraoperative and postoperative techniques to reduce blood loss, and also introduces current innovative substitutes for transfusions. This article also assists in considering and maneuvering through the legal and ethical systems to respect patients' beliefs and ensuring their safety.
Collapse
Affiliation(s)
- Gee Mei Tan
- From the Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, Colorado
| | - Nicole R Guinn
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Steven M Frank
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Aryeh Shander
- Department of Anesthesiology and Critical Care Medicine, Englewood Hospital and Medical Center and TeamHealth Research Institute, Englewood, New Jersey
| |
Collapse
|
26
|
Carden MA, Little J. Emerging disease-modifying therapies for sickle cell disease. Haematologica 2019; 104:1710-1719. [PMID: 31413089 PMCID: PMC6717563 DOI: 10.3324/haematol.2018.207357] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Sickle cell disease afflicts millions of people worldwide and approximately 100,000 Americans. Complications are myriad and arise as a result of complex pathological pathways ‘downstream’ to a point mutation in DNA, and include red blood cell membrane damage, inflammation, chronic hemolytic anemia with episodic vaso-occlusion, ischemia and pain, and ultimately risk of cumulative organ damage with reduced lifespan of affected individuals. The National Heart, Lung, and Blood Institute’s 2014 evidence-based guideline for sickle cell disease management states that additional research is needed before investigational curative therapies will be widely available to most patients with sickle cell disease. To date, sickle cell disease has been cured by hematopoietic stem cell transplantation in approximately 1,000 people, most of whom were children, and significantly ameliorated by gene therapy in a handful of subjects who have only limited follow-up thus far. During a timespan in which over 20 agents were approved for the treatment of cystic fibrosis by the Food and Drug Administration, similar approval was granted for only two drugs for sickle cell disease (hydroxyurea and L-glutamine) despite the higher prevalence of sickle cell disease. This trajectory appears to be changing, as the lack of multimodal agent therapy in sickle cell disease has spurred engagement among many in academia and industry who, in the last decade, have developed new drugs poised to prevent complications and alleviate suffering. Identified therapeutic strategies include fetal hemoglobin induction, inhibition of intracellular HbS polymerization, inhibition of oxidant stress and inflammation, and perturbation of the activation of the endothelium and other blood components (e.g. platelets, white blood cells, coagulation proteins) involved in the pathophysiology of sickle cell disease. In this article, we present a crash-course review of disease-modifying approaches (minus hematopoietic stem cell transplant and gene therapy) for patients with sickle cell disease currently, or recently, tested in clinical trials in the era following approval of hydroxyurea.
Collapse
Affiliation(s)
- Marcus A Carden
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of North Carolina Chapel Hill School of Medicine.,Department of Medicine, Division of Hematology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jane Little
- Department of Medicine, Division of Hematology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Jacquot C, Mo YD, Luban NLC. New Approaches and Trials in Pediatric Transfusion Medicine. Hematol Oncol Clin North Am 2019; 33:507-520. [PMID: 31030816 DOI: 10.1016/j.hoc.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood transfusions are frequently lifesaving, but there is growing awareness of their associated infectious and noninfectious adverse events. Patient blood management advocates for judicious use of transfusions and considerations of alternatives to correct anemia or achieve hemostasis. Several transfusion practices, either already implemented or under investigation, aim to further improve the safety of transfusions. An enduring challenge in pediatric and neonatal transfusion practice is that studies typically focus on adults, and findings are extrapolated to younger patients. This article aims to summarize some of the newer developments in transfusion medicine with a focus on the neonatal and pediatric population.
Collapse
Affiliation(s)
- Cyril Jacquot
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Yunchuan Delores Mo
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Naomi L C Luban
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
28
|
The effect of SANGUINATE® (PEGylated carboxyhemoglobin bovine) on cardiopulmonary bypass functionality using a bovine whole blood model of normovolemic hemodilution. Perfusion 2019; 35:19-25. [DOI: 10.1177/0267659119850681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cardiac surgery using cardiopulmonary bypass carries a high risk of bleeding and need for blood transfusion. Blood administration is associated with increased rates of morbidity and mortality. Perioperatively, strategies are often employed to reduce blood transfusions in high-risk patients or in situations where blood transfusion is contraindicated. Normovolemic hemodilution is a blood conservation technique used during cardiac surgery that involves replacement of blood with fluids. SANGUINATE® (PEGylated carboxyhemoglobin bovine) is a novel hemoglobin-based oxygen carrier that can deliver oxygen effectively to tissues in the presence of severe hypoxia. The use of a hemoglobin-based oxygen carrier during hemodilution may augment tissue oxygen delivery and reduce blood transfusion. Methods: Six standardized cardiopulmonary bypass runs simulating normovolemic hemodilution using varying proportions of bovine whole blood and SANGUINATE were performed. Pump speed, flow rate, line pressures, hemoglobin concentration, oxygenation, and degree of anticoagulation were assessed at regular intervals. Membrane oxygenators and arterial line filters were inspected for evidence of clotting following each run. Results: Increases in the pressure drop across the membrane oxygenator were detected during runs 5 and 6. Median activated clotting time values were able to be maintained at goal during the runs, and SANGUINATE did not appear to be thrombogenic. Hemoglobin concentration decreased following the addition of SANGUINATE. Oxygenation was maintained during all runs that included SANGUINATE. Conclusion: SANGUINATE does not impact the performance of the cardiopulmonary bypass circuit in a bovine whole blood model. The results support further evaluation of SANGUINATE in the setting of normovolemic hemodilution and cardiopulmonary bypass.
Collapse
|
29
|
Walter M, Stahl W, Brenneisen P, Reichert AS, Stucki D. Carbon monoxide releasing molecule 401 (CORM-401) modulates phase I metabolism of xenobiotics. Toxicol In Vitro 2019; 59:215-220. [PMID: 31004742 DOI: 10.1016/j.tiv.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 11/18/2022]
Abstract
Next to its well-studied toxicity, carbon monoxide (CO) is recognized as a signalling molecule in various cellular processes. Thus, CO-releasing molecules (CORMs) are of considerable interest for basic research and drug development. Aim of the present study was to investigate if CO, released from CORMs, inhibits cytochrome P450-dependent monooxygenase (CYP) activity and modulates xenobiotic metabolism. CORM-401 was used as a model CO delivering compound; inactive CORM-401 (iCORM-401), unable to release CO, served as control compound. CO release from CORM-401, but not from iCORM-401, was validated using the cell free myoglobin assay. CO-dependent inhibition of CYP activity was shown by 7-ethoxyresorufin-O-deethylation (EROD) with recombinant CYP and HepG2 cells. Upon CORM-401 exposure EROD activity of recombinant CYP decreased concentration dependently, while iCORM-401 had no effect. Treatment with CORM-401 decreased EROD activity in HepG2 cells at concentrations higher than 50 μM CORM-401, while iCORM-401 showed no effect. At the given concentrations cell viability was not affected. Amitriptyline was selected as a model xenobiotic and formation of its metabolite nortriptyline by recombinant CYP was determined by HPLC. CORM-401 treatment inhibited the formation of nortriptyline whereas iCORM-401 treatment did not. Overall, we demonstrate CO-mediated inhibitory effects on CYP activity when applying CORMs. Since CORMs are currently under drug development, the findings emphasize the importance to take into account that this class of compounds may interfere with xenobiotic metabolism.
Collapse
Affiliation(s)
- Moritz Walter
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001 Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001 Düsseldorf, Germany.
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001 Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001 Düsseldorf, Germany
| |
Collapse
|
30
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
McConachie S, Wahby K, Almadrahi Z, Wilhelm S. Early Experiences With PEGylated Carboxyhemoglobin Bovine in Anemic Jehovah’s Witnesses: A Case Series and Review of the Literature. J Pharm Pract 2018; 33:372-377. [DOI: 10.1177/0897190018815373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Jehovah’s Witnesses (JW) represent a complex patient population due to their refusal to accept blood transfusions on religious grounds. Pharmacologic management of anemic JW patients is limited to stimulation of hematopoiesis by iron and erythropoietin supplementation and reduction of blood loss by prothrombin complex concentrates (PCCs). Hemoglobin-based oxygen carriers (HBOCs) represent the only pharmacologic modality for JW patients capable of acutely increasing a patient’s oxygen carrying capacity in the setting of organ failure, yet clinical safety and efficacy data are lacking in this population. We report 3 cases in which the HBOC, PEGylated carboxyhemoglobin bovine (Sanguinate®), was requested under emergent circumstances for severely anemic (hemoglobin <5 g/dL) JW patients who refused blood transfusions. Two patients received PEGylated carboxyhemoglobin infusions for severe anemia, while the third patient died prior to receiving the medication. One patient who received Sanguinate died after 5 units of medication. The other patient’s hemoglobin recovered and she was discharged in stable condition. This series demonstrates the complex nature of the critically anemic JW population and highlights the clinical considerations of using HBOCs in clinical practice and the critical need for further research before they can be broadly recommended.
Collapse
Affiliation(s)
- Sean McConachie
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Beaumont Hospital, Dearborn, MI, USA
| | | | | | - Sheila Wilhelm
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
32
|
Moerdler S, Manwani D. New insights into the pathophysiology and development of novel therapies for sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:493-506. [PMID: 30504350 PMCID: PMC6245971 DOI: 10.1182/asheducation-2018.1.493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although the seminal event in sickle cell disease is the polymerization of abnormal hemoglobin, the downstream pathophysiology of vasoocclusion results from heterotypic interactions between the altered, adhesive sickle cell red blood cells, neutrophils, endothelium, and platelets. Ischemia reperfusion injury, hemolysis, and oxidant damage all contribute to heightened inflammation and activation of the hemostatic system. These various pathways are the focus of emerging treatments with potential to ameliorate disease manifestations. This review summarizes the considerable progress in development of these agents despite challenges in selection of study end points and complex pathophysiology.
Collapse
Affiliation(s)
- Scott Moerdler
- Children’s Hospital, Montefiore Medical Center, Bronx, NY; and
- Department of Microbiology and Immunology and
| | - Deepa Manwani
- Children’s Hospital, Montefiore Medical Center, Bronx, NY; and
- Division of Pediatric Hematology, Oncology, Marrow and Blood Cell Transplantation, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
33
|
Abstract
In the 100 years since sickle cell anemia (SCA) was first described in the medical literature, studies of its molecular and pathophysiological basis have been at the vanguard of scientific discovery. By contrast, the translation of such knowledge into treatments that improve the lives of those affected has been much too slow. Recent years, however, have seen major advances on several fronts. A more detailed understanding of the switch from fetal to adult hemoglobin and the identification of regulators such as BCL11A provide hope that these findings will be translated into genomic-based approaches to the therapeutic reactivation of hemoglobin F production in patients with SCA. Meanwhile, an unprecedented number of new drugs aimed at both the treatment and prevention of end-organ damage are now in the pipeline, outcomes from potentially curative treatments such as allogeneic hematopoietic stem cell transplantation are improving, and great strides are being made in gene therapy, where methods employing both antisickling β-globin lentiviral vectors and gene editing are now entering clinical trials. Encouragingly, after a century of neglect, the profile of the vast majority of those with SCA in Africa and India is also finally improving.
Collapse
Affiliation(s)
- Thomas N Williams
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College London, London W2 1NY, United Kingdom;
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1589, USA;
| |
Collapse
|
34
|
Matsuhira T, Kure T, Yamamoto K, Sakai H. Analysis of Dimeric αβ Subunit Exchange between PEGylated and Native Hemoglobins (α2β2 Tetramer) in an Equilibrated State by Intramolecular ββ-Cross-Linking. Biomacromolecules 2018; 19:3412-3420. [DOI: 10.1021/acs.biomac.8b00728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Takashi Matsuhira
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Japan
| | - Keizo Yamamoto
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Japan
| |
Collapse
|
35
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Abstract
Introduction Sickle cell disease (SCD) is an orphan disease in the United States, but is highly prevalent worldwide. Only two drugs, hydroxyurea and L-glutamine, are approved for this disease. With an improved understanding of the pathophysiology of SCD as well as the success of several recently approved drugs for other orphan diseases, there is an increased interest in the development of drugs for SCD. Areas covered This review summarizes published studies of drug therapies and ongoing trials of novel agents. Expert opinion The development of drugs with different mechanisms of action offers opportunities for combination and individualized therapy in SCD. In addition to acute pain crisis, the evaluation of other SCD-related complications, exercise capacity, patient reported outcomes and validated surrogate endpoints are necessary to advance drug development. It is important to involve sites in sub-Saharan Africa and India, which have the highest burden of SCD, in trials of novel therapies.
Collapse
Affiliation(s)
- Kenneth I Ataga
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | - Payal C Desai
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC.,#Division of Hematology, The Ohio State University, Columbus, OH
| |
Collapse
|
37
|
McConachie SM, Almadrahi Z, Wahby KA, Wilhelm SM. Pharmacotherapy in Acutely Anemic Jehovah’s Witnesses: An Evidence-Based Review. Ann Pharmacother 2018; 52:910-919. [DOI: 10.1177/1060028018766656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: To determine the pharmacological treatment methods available to anemic Jehovah’s Witnesses (JW). Data Sources: MEDLINE and PubMed were searched from inception through February 2018 using the search terms Jehovah’s Witnesses, treatment, erythropoietin, hemoglobin-based oxygen carrier, Sanguinate, Hemopure, bleeding, and anemia. Study Selection and Data Extraction: All clinical trials, cohort studies, case-control studies, and observational trials involving pharmacotherapy in anemic JW patients were evaluated. Case reports and bibliographies were also analyzed for inclusion. Data Synthesis: Two studies involving the use of erythropoietin (EPO) and one study involving recombinant factor VIIa were included. Information was also included from other pharmacotherapeutic modalities that had case report data only. Current published evidence is limited with regard to evidence-based management of JW patients. High-dose EPO, intravenous iron supplementation, and hemostatic agents have demonstrated good clinical outcomes in case reports. EPO doses as high as 40 000 units daily have been advocated by some experts; however, pharmacokinetic studies do not support dose-dependent effects. Hemoglobin-based oxygen carriers (HBOCs) are currently not Food and Drug Administration approved. They are available through expanded access programs and may represent a lifesaving modality in the setting of severe anemia. Conclusions: There are currently not enough data to make definitive recommendations on the use of pharmacological agents to treat severe anemia in the JW population. Further evidence utilizing EPO and HBOCs will be beneficial to guide therapy.
Collapse
Affiliation(s)
- Sean M. McConachie
- Wayne State University, Detroit, MI, USA
- Harper University Hospital, Detroit, MI, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Sickle cell disease (SCD) is a group of inherited disorders caused by mutations in HBB, which encodes haemoglobin subunit β. The incidence is estimated to be between 300,000 and 400,000 neonates globally each year, the majority in sub-Saharan Africa. Haemoglobin molecules that include mutant sickle β-globin subunits can polymerize; erythrocytes that contain mostly haemoglobin polymers assume a sickled form and are prone to haemolysis. Other pathophysiological mechanisms that contribute to the SCD phenotype are vaso-occlusion and activation of the immune system. SCD is characterized by a remarkable phenotypic complexity. Common acute complications are acute pain events, acute chest syndrome and stroke; chronic complications (including chronic kidney disease) can damage all organs. Hydroxycarbamide, blood transfusions and haematopoietic stem cell transplantation can reduce the severity of the disease. Early diagnosis is crucial to improve survival, and universal newborn screening programmes have been implemented in some countries but are challenging in low-income, high-burden settings.
Collapse
|
39
|
Abu Jawdeh BG, Woodle ES, Leino AD, Brailey P, Tremblay S, Dorst T, Abdallah MH, Govil A, Byczkowski D, Misra H, Abuchowski A, Alloway RR. A phase Ib, open-label, single arm study to assess the safety, pharmacokinetics, and impact on humoral sensitization of SANGUINATE infusion in patients with end-stage renal disease. Clin Transplant 2017; 32. [DOI: 10.1111/ctr.13155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Bassam G. Abu Jawdeh
- Division of Nephrology; Kidney C.A.R.E. Program; University of Cincinnati College of Medicine; Cincinnati OH USA
- Cincinnati VA Medical Center; Cincinnati OH USA
| | - Ervin Steve Woodle
- Division of Transplant Surgery; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Abbie D. Leino
- Division of Transplant Surgery; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Paul Brailey
- Transplant Immunology Division; Hoxworth Blood Center; Cincinnati OH USA
| | - Simon Tremblay
- Division of Transplant Surgery; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Tonya Dorst
- Division of Transplant Surgery; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Mouhamad H. Abdallah
- Division of Cardiovascular Health and Disease; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Amit Govil
- Division of Nephrology; Kidney C.A.R.E. Program; University of Cincinnati College of Medicine; Cincinnati OH USA
| | | | - Hemant Misra
- Prolong Pharmaceuticals; South Plainfield NJ USA
| | | | - Rita R. Alloway
- Division of Nephrology; Kidney C.A.R.E. Program; University of Cincinnati College of Medicine; Cincinnati OH USA
| |
Collapse
|
40
|
Dhar R, Misra H, Diringer MN. SANGUINATE™ (PEGylated Carboxyhemoglobin Bovine) Improves Cerebral Blood Flow to Vulnerable Brain Regions at Risk of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurocrit Care 2017. [DOI: 10.1007/s12028-017-0418-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Gomperts E, Belcher JD, Otterbein LE, Coates TD, Wood J, Skolnick BE, Levy H, Vercellotti GM. The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises. Am J Hematol 2017; 92:569-582. [PMID: 28378932 PMCID: PMC5723421 DOI: 10.1002/ajh.24750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Sickle Cell Disease (SCD) is a painful, lifelong hemoglobinopathy inherited as a missense point mutation in the hemoglobin (Hb) beta-globin gene. This disease has significant impact on quality of life and mortality, thus a substantial medical need exists to reduce the vaso-occlusive crises which underlie the pathophysiology of the disease. The concept that a gaseous molecule may exert biological function has been well known for over one hundred years. Carbon monoxide (CO), although studied in SCD for over 50 years, has recently emerged as a powerful cytoprotective biological response modifier capable of regulating a host of physiologic and therapeutic processes that, at low concentrations, exerts key physiological functions in various models of tissue inflammation and injury. CO is physiologically generated by the metabolism of heme by the heme oxygenase enzymes and is measurable in blood. A substantial amount of preclinical and clinical data with CO have been generated, which provide compelling support for CO as a potential therapeutic in a number of pathological conditions. Data underlying the therapeutic mechanisms of CO, including in SCD, have been generated by a plethora of in vitro and preclinical studies including multiple SCD mouse models. These data show CO to have key signaling impacts on a host of metallo-enzymes as well as key modulating genes that in sum, result in significant anti-inflammatory, anti-oxidant and anti-apoptotic effects as well as vasodilation and anti-adhesion of cells to the endothelium resulting in preservation of vascular flow. CO may also have a role as an anti-polymerization HbS agent. In addition, considerable scientific data in the non-SCD literature provide evidence for a beneficial impact of CO on cerebrovascular complications, suggesting that in SCD, CO could potentially limit these highly problematic neurologic outcomes. Research is needed and hopefully forthcoming, to carefully elucidate the safety and benefits of this potential therapy across the age spectrum of patients impacted by the host of pathophysiological complications of this devastating disease.
Collapse
Affiliation(s)
- Edward Gomperts
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - John D Belcher
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Leo E Otterbein
- Harvard Medical School; Beth Israel Deaconess Medical Center, 3 Blackfan Circle Center for Life Sciences, #630, Boston, MA, 02115, USA
| | - Thomas D Coates
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - John Wood
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - Brett E Skolnick
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Howard Levy
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Gregory M Vercellotti
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| |
Collapse
|
42
|
Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers. J Funct Biomater 2017; 8:jfb8010011. [PMID: 28335469 PMCID: PMC5371884 DOI: 10.3390/jfb8010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
Hemoglobin (Hb) is an ideal material for use in the development of an oxygen carrier in view of its innate biological properties. However, the vascular retention of free Hb is too short to permit a full therapeutic effect because Hb is rapidly cleared from the kidney via glomerular filtration or from the liver via the haptogloblin-CD 163 pathway when free Hb is administered in the blood circulation. Attempts have been made to develop alternate acellular and cellular types of Hb based oxygen carriers (HBOCs), in which Hb is processed via various routes in order to regulate its pharmacokinetic properties. These HBOCs have been demonstrated to have superior pharmacokinetic properties including a longer half-life than the Hb molecule in preclinical and clinical trials. The present review summarizes and compares the pharmacokinetic properties of acellular and cellular type HBOCs that have been developed through different approaches, such as polymerization, PEGylation, cross-linking, and encapsulation.
Collapse
|