1
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Escherichia coli Isolates from Clinical Cases of Ducks in Hungary Between 2022 and 2023. Antibiotics (Basel) 2025; 14:491. [PMID: 40426557 PMCID: PMC12108305 DOI: 10.3390/antibiotics14050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/27/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) poses a growing threat to veterinary medicine and food safety. This study examines Escherichia coli antibiotic resistance patterns in ducks, focusing on multidrug-resistant (MDR) strains. Understanding resistance patterns and predicting MDR occurrence are critical for effective intervention strategies. Methods: E. coli isolates were collected from duck samples across multiple regions. Descriptive statistics and resistance frequency analyses were conducted. A decision tree classifier and a neural network were trained to predict MDR status. Cross-resistance relationships were visualized using graph-based models, and Monte Carlo simulations estimated MDR prevalence variations. Results: Monte Carlo simulations estimated an average MDR prevalence of 79.6% (95% CI: 73.1-86.1%). Key predictors in MDR classification models were enrofloxacin, neomycin, amoxicillin, and florfenicol. Strong cross-resistance associations were detected between neomycin and spectinomycin, as well as amoxicillin and doxycycline. Conclusions: The high prevalence of MDR strains underscores the urgent need to revise antibiotic usage guidelines in veterinary settings. The effectiveness of predictive models suggests that machine learning tools can aid in the early detection of MDR, contributing to the optimization of treatment strategies and the mitigation of resistance spread. The alarming MDR prevalence in E. coli isolates from ducks reinforces the importance of targeted surveillance and antimicrobial stewardship. Predictive models, including decision trees and neural networks, provide valuable insights into resistance trends, while Monte Carlo simulations further validate these findings, emphasizing the need for proactive antimicrobial management.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary
| |
Collapse
|
2
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Escherichia coli Isolates from Clinical Cases of Geese in Hungary Between 2022 and 2023. Antibiotics (Basel) 2025; 14:450. [PMID: 40426517 PMCID: PMC12108276 DOI: 10.3390/antibiotics14050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/19/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) poses an increasing threat to animal health and food safety. In the poultry sector, particularly in waterfowl farming, the widespread use of antibiotics may contribute to the dissemination of resistant Escherichia coli strains. This study aims to map the antibiotic resistance profiles of E. coli isolates from geese in Hungary, determine the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, and analyze resistance patterns and co-resistance relationships. Methods: E. coli isolates from clinical cases between 2022 and 2023 were examined using minimum inhibitory concentration (MIC) determination. Susceptibility results were evaluated based on the Clinical Laboratory Standard Institute (CLSI) breakpoints. Cluster analysis and principal component analysis (PCA) were applied to identify resistance patterns. Co-resistance relationships were examined through network analysis, while Monte Carlo simulations were used to estimate the expected prevalence of MDR strains. Results: Among the examined isolates, neomycin resistance was particularly high (86.8%), while florfenicol (73.6%) and amoxicillin (65.9%) resistance levels were also significant. The prevalence of MDR strains was 86.8%, and XDR strains accounted for 38.5%. Co-resistance analysis revealed a strong correlation between neomycin and spectinomycin resistance, as well as amoxicillin and doxycycline resistance. Monte Carlo simulations estimated that the expected range of MDR strain prevalence could vary between 80.2% and 92.3%. Conclusions: The high prevalence of MDR and XDR strains highlights the urgent need to reassess antibiotic usage strategies in goose farming. These findings underscore the importance of targeted antibiotic use, continuous microbiological surveillance, and the exploration of alternative therapeutic approaches to mitigate AMR.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István utca 2, HU-1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István utca 2, HU-1078 Budapest, Hungary
| |
Collapse
|
3
|
Jerzsele Á, Kerek Á, Barnácz F, Csirmaz B, Szabó Á, Kovács L. Antimicrobial Susceptibility Profiles of Commensal Escherichia coli Isolates from Turkeys in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2025; 14:305. [PMID: 40149116 PMCID: PMC11939659 DOI: 10.3390/antibiotics14030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The global spread of antimicrobial resistance (AMR) has prompted the critical importance of regular monitoring. Escherichia coli, a widely distributed facultative anaerobic pathogen, is significant both in terms of the clinical diseases that it causes and as a reservoir of antimicrobial resistance, with notable implications for both animal and public health. Within the poultry industry, the turkey sector is an emerging and internationally significant branch. Methods: Our objective was to assess the antimicrobial resistance profile of commensal Escherichia coli strains isolated from large-scale turkey flocks in Hungary using minimum inhibitory concentration (MIC) determination. Results: A total of 470 isolates were analyzed, revealing that 61.5% of the strains were resistant to amoxicillin, while 18.5% were resistant to amoxicillin-clavulanic acid. The resistance observed against enrofloxacin (62.8%) and ceftriaxone (24%) is concerning. Comparison with human resistance data showed a similar resistance rate for amoxicillin and ampicillin, as well as amoxicillin-clavulanic acid and cephalosporins. However, for other active substances, the situation was significantly worse in veterinary medicine. Conclusions: The lower resistance to amoxicillin-clavulanic acid indicates that most strains are β-lactamase producers. Our findings underscore the necessity of regular and comprehensive surveillance, which can establish temporal trends over time. Incorporating data on antibiotic usage into future studies could facilitate the exploration of relevant correlations. Additionally, the next-generation sequencing of multidrug-resistant strains could help elucidate the genetic basis of resistance.
Collapse
Affiliation(s)
- Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.J.); (F.B.); (B.C.); (Á.S.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.J.); (F.B.); (B.C.); (Á.S.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| | - Franciska Barnácz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.J.); (F.B.); (B.C.); (Á.S.)
| | - Bence Csirmaz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.J.); (F.B.); (B.C.); (Á.S.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.J.); (F.B.); (B.C.); (Á.S.)
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
- Poultry-Care Kft., Lehel út 21, H-5052 Újszász, Hungary
| |
Collapse
|
4
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Commensal Escherichia coli Isolates from Chickens in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2024; 13:1175. [PMID: 39766565 PMCID: PMC11672764 DOI: 10.3390/antibiotics13121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Widespread use of antibiotics has led to a global increase in resistance. The Escherichia coli bacterium is a facultative pathogen that often develops antibiotic resistance and is easily transmitted, not only in animal health but also in public health. Within the poultry sector, domestic fowl is widespread and one of the most dynamically growing sectors, which is why regular, extensive monitoring is crucial. Among economically important livestock, poultry as a major source of animal protein for humans is a frequent carrier of Escherichia coli, also with sporadically detected clinical disease. Methods: Our research evaluates the susceptibility of commensal Escherichia coli strains, isolated from large domestic fowl flocks in Hungary, to antibiotics of animal and public health importance, by determining the minimum inhibitory concentration value. Results: A total of 410 isolates were tested, with the highest level of resistance being found for florfenicol (62.7%). Particularly alarming are the resistance rates to enrofloxacin (52.9%), colistin (30.7%), and ceftriaxone (23.9%). We also found a resistance of 56.1% to amoxicillin and 22.2% to amoxicillin-clavulanic acid, which suggests that the majority of strains are β-lactamase-producing. When compared with the national human resistance data, we found with similar values for amoxicillin and amoxicillin-clavulanic acid, but the resistance rates of aminoglycosides, fluoroquinolones, and potency sulfonamide were worse in animal health. Conclusions: In conclusion, our results suggest that periodic surveys should be carried out and that long-term trends can be established that allow the monitoring of resistance patterns over time. For multidrug-resistant strains, new generation sequencing can be used to investigate the genetic background of resistance.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
5
|
Edris SN, Hamad A, Awad DAB, Sabeq II. Prevalence, antibiotic resistance patterns, and biofilm formation ability of Enterobacterales recovered from food of animal origin in Egypt. Vet World 2023; 16:403-413. [PMID: 37042006 PMCID: PMC10082721 DOI: 10.14202/vetworld.2023.403-413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Background and Aim: The majority of animal-derived food safety studies have focused on foodborne zoonotic agents; however, members of the opportunistic Enterobacteriaceae (Ops) family are increasingly implicated in foodborne and public health crises due to their robust evolution of acquiring antimicrobial resistance and biofilms, consequently require thorough characterization, particularly in the Egyptian food sector. Therefore, this study aimed to determine the distribution and prevalence of Enterobacteriaceae family members in animal-derived foods, as well as their resistance to important antimicrobials and biofilm-forming potential.
Materials and Methods: A total of 274 beef, rabbit meat, chicken meat, egg, butter, and milk samples were investigated for the presence of Enterobacteriaceae. All isolated strains were first recognized using traditional microbiological techniques. Following that, matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to validate the Enterobacteriaceae's identity. The isolated enterobacteria strains were tested on disk diffusion and crystal violet quantitative microtiter plates to determine their antibiotic resistance and capacity to form biofilms.
Results: There have been thirty isolates of Enterobacteriaceae from seven different species and four genera. Out of the three food types, Pseudomonas aeruginosa had the highest prevalence rate (4.1%). With three species, Enterobacter genera had the second-highest prevalence (3.28%) across five different food categories. In four different food types, the Klebsiella genera had the second-highest distribution and third-highest incidence (2.55%). Almost all isolates, except three Proteus mirabilis, showed prominent levels of resistance, particularly to beta-lactam antibiotics. Except for two Enterobacter cloacae and three P. mirabilis isolates, all isolates were classified as multidrug-resistant (MDR) or extensively multidrug-resistant (XDR). The multiple antibiotic resistance index (MARI) of the majority of isolates dropped between 0.273 and 0.727. The highest MARI was conferred by Klebsiella pneumoniae, at 0.727. Overall, 83.33% of the isolates had strong biofilm capacity, while only 16.67% exhibited moderate capacity.
Conclusion: The MDR, XDR, and strong biofilm indicators confirmed in 83.33% of the currently tested Enterobacteriaceae from animal-derived foods suggest that, if not addressed, there may be rising risks to Egypt's economy and public health.
Collapse
Affiliation(s)
- Shimaa N. Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Dina A. B. Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Islam I. Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| |
Collapse
|
6
|
Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022; 13:148. [PMID: 36514172 DOI: 10.1186/s40104-022-00786-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, animals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consumers' demands. However, it is not well understood how ABF and organic poultry production practices influence AMR profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportunities to develop efficient and safe production practices in controlling pathogens.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Center, AAFC, London, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.
| |
Collapse
|
7
|
Sadat A, Ramadan H, Elkady MA, Hammad AM, Soliman MM, Aboelenin SM, Al-Harthi HF, Abugomaa A, Elbadawy M, Awad A. Phylotypic Profiling, Distribution of Pathogenicity Island Markers, and Antimicrobial Susceptibility of Escherichia coli Isolated from Retail Chicken Meat and Humans. Antibiotics (Basel) 2022; 11:1197. [PMID: 36139976 PMCID: PMC9495032 DOI: 10.3390/antibiotics11091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli (E.coli) found in retail chicken meat could be causing a wide range of infections in humans and constitute a potential risk. This study aimed to evaluate 60 E. coli isolates from retail chicken meat (n = 34) and human urinary tract infections (UTIs, n = 26) for phylogenetic diversity, presence of pathogenicity island (PAI) markers, antimicrobial susceptibility phenotypes, and antimicrobial resistance genes, and to evaluate their biofilm formation capacity. In that context, confirmed E.coli isolates were subjected to phylogrouping analysis using triplex PCR, antimicrobial susceptibility testing using the Kirby-Bauer disc diffusion method; PAI distribution was investigated by using two multiplex PCRs. Most of the chicken isolates (22/34, 64.7%) were identified as commensal E. coli (A and B1), while 12 isolates (35.3%) were classified as pathogenic virulent E. coli (B2 and D). Similarly, the commensal group dominated in human isolates. Overall, 23 PAIs were detected in the chicken isolates; among them, 39.1% (9/23) were assigned to group B1, 34.8% (8/23) to group A, 4.34% (1/23) to group B2, and 21.7% (5/23) to group D. However, 25 PAIs were identified from the human isolates. PAI IV536 was the most prevalent (55.9%, 69.2%) PAI detected in both sources. In total, 37 (61.7%) isolates of the chicken and human isolates were biofilm producers. Noticeably, 100% of E. coli isolates were resistant to penicillin and rifamycin. Markedly, all E. coli isolates displayed multiple antibiotic resistance (MAR) phenotypes, and the multiple antibiotic resistance index (MARI) among E. coli isolates ranged between 0.5 and 1. Several antibiotic resistance genes (ARGs) were identified by a PCR assay; the sul2 gene was the most prevalent (38/60, 63.3%) from both sources. Interestingly, a significant positive association (r = 0.31) between biofilm production and resistance to quinolones by the qnr gene was found by the correlation analysis. These findings were suggestive of the transmission of PAI markers and antibiotic resistance genes from poultry to humans or humans to humans through the food chain. To avoid the spread of virulent and multidrug-resistant E. coli, intensive surveillance of retail chicken meat markets is required.
Collapse
Affiliation(s)
- Asmaa Sadat
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Elkady
- Mansoura Veterinary Laboratory Branch, Microbiology Research Department, Animal Health Research Institute, Kafrelsheikh 33516, Egypt
| | - Amal Mahmoud Hammad
- Biochemistry Department, Faculty of Medicine Damietta, Al-Azhar University, Cairo 11651, Egypt
| | - Mohamed M. Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Salama M. Aboelenin
- Biology Department, Turabah University College, Taif University, Al Hawiyah 21995, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Al Hawiyah 21995, Saudi Arabia
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Hu J, Wang D, Huang X, Yang Y, Lian X, Wang W, Xu X, Liu Y. Effects of TolC on the pathogenicity of porcine extraintestinal pathogenic Escherichia coli. Front Immunol 2022; 13:929740. [PMID: 36059454 PMCID: PMC9433895 DOI: 10.3389/fimmu.2022.929740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a well-known critical pathogenic zoonosis that causes extraintestinal infections in humans and animals by affecting their immune organs. Recently, research on the outer membrane protein of E. coli, tolerant colicin (TolC), a virulent protein in the formation of the ExPEC efflux pump, has been an attractive subject. However, the pathogenic mechanisms remain unclear. This study aimed to explore the role of TolC in the pathogenesis of the ExPEC strain PPECC42; a complementation strain (Cm-TolC) and an isogenic mutant (ΔTolC) were constructed. Loss of TolC drastically impaired the virulence of ExPEC in an experimental mouse model. ΔTolC showed a substantial decrease in the porcine aortic vascular endothelial cell (PAVEC) adherence, invasion, and pro-inflammatory response, in contrast to that of the wild type, with a reduced survival ratio in both the bacterial load and whole blood in mice. ΔTolC also showed decreased expression of necroptosis signals such as receptor-interacting protein kinase 1, phosphorylated mixed-lineage kinase domain-like protein, and mitochondrial proteins such as phosphoglycerate mutase family member 5. Our data suggest that TolC is closely associated with ExPEC pathogenesis. These results provide scientific grounds for exploring the potential of TolC as an effective drug target for controlling ExPEC infection, screening new inhibitors, and developing new drugs. This will allow for further prevention and control of ExPEC infection.
Collapse
Affiliation(s)
- Jin Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dongfang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xingfa Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, China
| | - Yang Yang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xin Lian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Wenjun Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yulan Liu,
| |
Collapse
|
9
|
Bieniek A, Lachowicz-Wiśniewska S, Bojarska J. The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry ( Elaeagnus multiflora Thunb.): A Review. Molecules 2022; 27:2719. [PMID: 35566071 PMCID: PMC9101257 DOI: 10.3390/molecules27092719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
The cherry silverberry (Elaeagnus multiflora Thunb.) is a lesser-known plant species with high nutritional and therapeutic potential. Cherry silverberry contains numerous biologically active compounds. The cherry silverberry is a shrub growing up to 3 m. Its drupe-like fruit is ellipsoidal, up to 1 cm long, and set on stems. It is red in color, juicy, and sour, and its taste resembles that of red currants. According to the literature, cherry silverberry fruit contains carbohydrates, organic acids, and amino acids, as well as vitamin C, in addition to biominerals, polyphenols, flavonoids, carotenoids, chlorophylls, and tocopherols, which contribute to its high nutritional value. New biotypes of cherry silverberry cultivated in Poland can be used for the production of functional foods and direct consumption. In China, the cherry silverberry, known as goumi, has been used as a medicinal plant and a natural remedy for cough, diarrhea, itch, foul sores, and, even, cancer. This review article summarizes the scant research findings on the nutritional and therapeutic benefits of cherry silverberry.
Collapse
Affiliation(s)
- Anna Bieniek
- Department of Agroecosystems and Horticulture, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 21 Street, 10-720 Olsztyn, Poland;
| | - Sabina Lachowicz-Wiśniewska
- Department of Food and Nutrition, Calisia University, Nowy Świat 4 Street, 62-800 Kalisz, Poland
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland
| | - Justyna Bojarska
- Chair of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński Sq. 1 Street, 10-726 Olsztyn, Poland;
| |
Collapse
|
10
|
Comparative Analysis of Human and Animal E. coli: Serotyping, Antimicrobial Resistance, and Virulence Gene Profiling. Antibiotics (Basel) 2022; 11:antibiotics11050552. [PMID: 35625196 PMCID: PMC9137549 DOI: 10.3390/antibiotics11050552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Widespread multidrug-resistant (MDR) and multi-virulent diarrheagenic E. coli create several crises among human and animal populations worldwide. For this reason, we looked forward to a breakthrough with this issue and tried to highlight these emerging threats. A total of 140 diarrheagenic E. coli isolates were recovered from animal and human sources. The O26 serotype, alongside the ampicillin/cefoxitin resistance phenotype, was predominant among both human and animal isolates. Of note, imipenem represented the most effective antibiotic against all the investigated isolates. Unfortunately, 90% and 57.9% of the tested isolates showed MDR and multi-virulent patterns, respectively. The animal isolates were more virulent and showed higher sensitivity to antimicrobial agents. Both animal and human isolates could not be arranged into related clusters. A strong negative correlation between the existence of virulence genes and antimicrobial resistance was clearly detected. A significant correlation between serotypes and antimicrobial resistance was not detected; meanwhile, a significant positive correlation between some serotypes and the presence of certain virulence genes was announced. Finally, our results confirmed the urgent need for restricted guidelines, in addition to new alternative therapies, due to the genetic diversity and wide spreading of MDR side by side with multi-virulent E. coli isolates.
Collapse
|
11
|
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 2021; 12:765. [PMID: 33536414 PMCID: PMC7858641 DOI: 10.1038/s41467-021-20988-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.
Collapse
Affiliation(s)
- Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK
| | - Johan Pensar
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Susan Murray
- Uppsala University, Department for medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| | - Thomas S Wilkinson
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Lisa K Williams
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Jonathan Porter
- National Laboratory Service, Environment Agency, Starcross, UK
| | - Kirsty Kemmett
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK.
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
12
|
F. Rabello R, R. Bonelli R, A. Penna B, P. Albuquerque J, M. Souza R, M. F. Cerqueira A. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals (Basel) 2020; 10:E552. [PMID: 32224900 PMCID: PMC7222418 DOI: 10.3390/ani10040552] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
In animal husbandry, antimicrobial agents have been administered as supplements to increase production over the last 60 years. Large-scale animal production has increased the importance of antibiotic management because it may favor the evolution of antimicrobial resistance and select resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil is still preparing a national surveillance plan, several changes in legislation and timely programs have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with animals come from official programs and the scientific community. This review aims to update and discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of the resistance reported by studies published since 2009, focusing on farm animals and derived foods with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial agents. Data here presented may be useful to provide a better understanding of the Brazilian status on antimicrobial resistance related to farm animals and animal-derived food products.
Collapse
Affiliation(s)
- Renata F. Rabello
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Raquel R. Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno A. Penna
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Julia P. Albuquerque
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Rossiane M. Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói 24120-191, Brazil
| | - Aloysio M. F. Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| |
Collapse
|
13
|
Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals (Basel) 2020. [PMID: 32224900 DOI: 10.3390/ani1004055210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In animal husbandry, antimicrobial agents have been administered as supplements to increase production over the last 60 years. Large-scale animal production has increased the importance of antibiotic management because it may favor the evolution of antimicrobial resistance and select resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil is still preparing a national surveillance plan, several changes in legislation and timely programs have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with animals come from official programs and the scientific community. This review aims to update and discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of the resistance reported by studies published since 2009, focusing on farm animals and derived foods with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial agents. Data here presented may be useful to provide a better understanding of the Brazilian status on antimicrobial resistance related to farm animals and animal-derived food products.
Collapse
Affiliation(s)
- Renata F Rabello
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Raquel R Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno A Penna
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Julia P Albuquerque
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Rossiane M Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói 24120-191, Brazil
| | - Aloysio M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| |
Collapse
|
14
|
Rossato J, Brito B, Kobayashi R, Koga V, Sarmiento J, Nakazato G, Lopes L, Balsan L, Grassotti T, Brito K. Antimicrobial resistance, diarrheagenic and avian pathogenic virulence genes in Escherichia coli from poultry feed and the ingredients. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Diarrheagenic (DEC) and avian pathogenic Escherichia coli (APEC) are associated with intestinal and extra-intestinal infections (ExPEC), respectively. We aimed to analyze the antimicrobial susceptibility, gene encoding virulence factors associated to DEC and APEC, and phylogenetic classification in E. coli isolated from 320 samples of feed and ingredients. Antimicrobial susceptibility was performed using the disk diffusion method and Multiple Antibiotic Resistance (MAR) Index and Multi-Drug Resistance (MDR) were calculated. Phylogenetic classification was performed on samples harboring DEC and/or APEC virulence-associated genes. A total of 110 E. coli strains were isolated in 15% (49/320) of the evaluated inputs (n=13 vegetable meal; n=33 animal meal, n=3 feed). In general, the isolates showed the highest rates of antimicrobial resistance to sulfonamide and cefazolin and 18% (20/110) were multi-drug resistant. MAR index of feed samples was the highest (0.467). Six and five strains had APEC and DEC virulence-associated genes, respectively, and belonging to phylogenetic groups A and B1. These findings point to the need for strict microbiological control during the production process of these foods.
Collapse
Affiliation(s)
- J.M. Rossato
- Instituto de Pesquisas Veterinárias Desidério Finamor, Brazil
| | - B.G. Brito
- Instituto de Pesquisas Veterinárias Desidério Finamor, Brazil
| | | | - V.L. Koga
- Universidade Estadual de Londrina, Brazil
| | | | | | | | | | - T.T. Grassotti
- Instituto de Pesquisas Veterinárias Desidério Finamor, Brazil
| | - K.C.T. Brito
- Instituto de Pesquisas Veterinárias Desidério Finamor, Brazil
| |
Collapse
|
15
|
Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli. Virulence 2019; 10:118-132. [PMID: 30676217 PMCID: PMC6363058 DOI: 10.1080/21505594.2019.1573491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Porcine extra-intestinal pathogenic Escherichia coli (ExPEC) causes great economic losses to the pig industry and poses a serious threat to public health worldwide. Some secreted virulence factors have been reported to be involved in the pathogenicity of the infection caused by ExPEC. Type-VI secretion system (T6SS) is discovered in many Gram-negative bacteria and contributes to the virulence of pathogenic bacteria. Valine-glycine repeat protein G (VgrG) has been reported as an important component of the functional T6SS. In our previous studies, a functional T6SS was identified in porcine ExPEC strain PCN033. Further analysis of the PCN033 genome identified two putative vgrGs genes (vgrG1 and 0248) located inside T6SS cluster and another two (vgrG2 and 1588) outside it. This study determined the function of the four putative VgrG proteins by constructing a series of mutants and complemented strains. In vitro, the VgrG1 protein was observed to be involved in the antibacterial ability and the interactions with cells. The animal model experiment showed that the deletion of vgrG1 significantly led to the decrease in the multiplication capacity of PCN033. However, the deletion of 0248 and/or the deletion of vgrG2 and 1588 had no effect on the pathogenicity of PCN033. The study of four putative VgrGs in PCN033 indicated that only VgrG1 plays an important role in the interaction between PCN033 and other bacteria or host cells. This study can provide a novel perspective to the pathogenesis of PCN033 and lay the foundation for discovering potential T6SS effectors.
Collapse
Affiliation(s)
- Bingbing Zong
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yanyan Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Xiangru Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Manli Liu
- e Hubei Biopesticide Engineering Research Centre , Hubei Academy of Agricultural Sciences , Wuhan Hubei , China
| | - Tongchao Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yongwei Zhu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yucheng Zheng
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Linlin Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Pei Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Chen Tan
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| |
Collapse
|
16
|
Dehghan MH, Soltani J, Farnad M, Kalantar E, Kamalinejad M, Khodaii Z, Hatami S, Mehrabani Natanzi M. Characterization of an Antimicrobial Extract from Elaeagnus angustifolia. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2014. [DOI: 10.17795/ijep20157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Virulence profiles, phylogenetic background, and antibiotic resistance of Escherichia coli isolated from turkeys with airsacculitis. ScientificWorldJournal 2014; 2014:289024. [PMID: 25105155 PMCID: PMC4101927 DOI: 10.1155/2014/289024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/30/2014] [Indexed: 11/23/2022] Open
Abstract
Avian Pathogenic Escherichia coli (APEC) has been studied for decades because of its economic impact on the poultry industry. Recently, the zoonotic potential of APEC and multidrug-resistant strains have emerged. The aim of this study was to characterize 225 APEC isolated from turkeys presenting airsacculitis. The results showed that 92% of strains presented a multidrug-resistance (MDR), and the highest levels of resistance were to sulfamethazine (94%) and tetracycline (83%). Half of these strains were classified in phylogenetic group B2, followed by B1 (28.6%), A (17.1%), and D (4.8%). The prevalence of virulence genes was as follows: salmochelin (iroN, 95%), increased serum survival (iss, 93%), colicin V (cvi/cva, 67%), aerobactin (iucD, 67%), temperature-sensitive haemagglutinin (tsh, 56%), iron-repressible protein (irp2, 51%), invasion brain endothelium (ibeA, 31%), vacuolating autotransporter toxin (vat, 24%), K1 antigen (neuS, 19%), enteroaggregative heat-stable cytotoxin (astA, 17%), and pilus associated with pyelonephritis (papC, 15%). These results demonstrate that the majority of the investigated strains belonged to group B2 and were MDR. These data suggest that turkeys may serve as a reservoir of pathogenic and multidrug-resistance strains, reinforcing the idea that poultry plays a role in the epidemiological chain of ExPEC.
Collapse
|
18
|
Phytochemistry and Preliminary Assessment of the Antibacterial Activity of Chloroform Extract of Amburana cearensis (Allemão) A.C. Sm. against Klebsiella pneumoniae Carbapenemase-Producing Strains. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:786586. [PMID: 24772183 PMCID: PMC3977124 DOI: 10.1155/2014/786586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/03/2022]
Abstract
The chloroform extract of the stem bark of Amburana cearensis was chemically characterized and tested for antibacterial activity.The extract was analyzed by gas chromatography and mass spectrometry. The main compounds identified were 4-methoxy-3-methylphenol (76.7%), triciclene (3.9%), α-pinene (1.0%), β-pinene (2.2%), and 4-hydroxybenzoic acid (3.1%). Preliminary antibacterial tests were carried out against species of distinct morphophysiological characteristics: Escherichia coli, Salmonella enterica Serotype Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. The minimum inhibitory concentration (MIC) was determinate in 96-well microplates for the chloroform extract and an analogue of themain compound identified, which was purchased commercially.We have shown that plant's extract was only inhibitory (but not bactericidal) at the maximum concentration of 6900 μg/mL against Pseudomonas aeruginosa and Bacillus cereus. Conversely, the analogue 2-methoxy-4-methylphenol produced MICs ranging from215 to 431 μg/mL against all bacterial species.New antibacterial assays conducted with such chemical compound against Klebsiella pneumoniae carbapenemase-producing strains have shown similarMICresults and minimumbactericidal concentration (MBC) of 431 μg/mL.We conclude that A. cearensis is a good source of methoxy-methylphenol compounds,which could be screened for antibacterial activity againstmultiresistant bacteria fromdifferent species
Collapse
|