1
|
Yang JO, Kim D, Lee YS, Hong KJ, Lee BH, Park MG. Ethyl Formate Fumigation for Controlling Two Major Aphid Pests, Aphis spiraecola and Aphis gossypii, on Passion Fruit, from Cultivation to Post-Harvest Storage. INSECTS 2024; 15:386. [PMID: 38921101 PMCID: PMC11203910 DOI: 10.3390/insects15060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Tropical and subtropical crops are being increasingly cultivated in South Korea, leading to an increase in damage by exotic insect pests. Consequently, ethyl formate (EF) is currently being considered for quarantine and pre-shipment fumigation. In this study, we evaluated the effectiveness of EF fumigation for controlling Aphis spiraecola Patch and Aphis gossypii Glover, two representative quarantine pests on passion fruit ("Pink Bourbon") during greenhouse cultivation and post-harvest storage. The efficacy of EF against both aphids in terms of the lethal concentration causing 50% mortality (LCt50%) and LCt99% was 1.36-2.61 g h/m3 and 3.73-7.55 g h/m3 under greenhouse conditions (23 °C), and 1.37-2.02 g h/m3 and 3.80-14.59 g h/m3 post-harvest (5 °C), respectively. EF at 4 g/m3 for 4 h resulted in 100% mortality of A. spiraecola, which was more resistant to EF, without causing phytotoxic damage to the trees in a 340 m3 greenhouse. Post-harvest fruit fumigation at 10 g/m3 for 4 h in a mid-size (0.8 m3) fumigation chamber resulted in complete disinfection. Moreover, the EF level decreased below the EF threshold within 10 min after natural ventilation in the greenhouse. Therefore, our results suggest EF fumigation as an effective method for controlling A. spiraecola and A. gossypii.
Collapse
Affiliation(s)
- Jeong Oh Yang
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea;
| | - Dongbin Kim
- Institute of Quality & Safety Evaluation of Agricultural Product, Kyungpook National University, Daegu 41566, Republic of Korea; (D.K.); (B.-H.L.)
| | - Young Su Lee
- Gyeonggi-do Agricultural Research & Extension Services, Hwaseong 18388, Republic of Korea;
| | - Ki-Jeong Hong
- Department of Plant Medicine, Sunchon University, 255 Jungang-ro, Suncheon 57922, Republic of Korea;
| | - Byung-Ho Lee
- Institute of Quality & Safety Evaluation of Agricultural Product, Kyungpook National University, Daegu 41566, Republic of Korea; (D.K.); (B.-H.L.)
| | - Min-Goo Park
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
1H NMR-based metabolic profile and chemometric analysis for the discrimination of Passiflora species genotypic variations. Food Res Int 2023; 164:112441. [PMID: 36738006 DOI: 10.1016/j.foodres.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
The species of the genus Passiflora (Passifloraceae family) have been used as food, cosmetic and traditional herbal. As a result, the Passiflora species are widely cultivated and has an economic, medicinal and ornamental importance. The popular designation as "passion fruit" and chemical profile of several Passiflora species remains unknown. The lack of chemical information contributes to the erroneous classification and adulteration. In recent years, special attention has been paid to the bioactivity and phytochemical profiles of several Passiflora species extracts. In this research, 1H NMR-based metabolic profiling coupled with chemometric tools was used to characterize and distinguish extracts obtained from different wild Passiflora species (P. alata, P. cincinnata, and P. setacea) and genetic varieties (P. alata var. BRS Pérola do Cerrado, P. cincinnata var. BRS Sertão Forte, and P. setacea var. BRS Pérola do Cerrado). Fourteen metabolites were identified by 1D and 2D NMR experiments, highlighting the presence of fatty acids, carbohydrates, saponins, alkaloids, and mainly C-glycosidic flavones. Principal components analysis (PCA) allowed discrimination of Passiflora extracts, which the quadranguloside, oleanolic acid-3-sophoroside, α-glucose, β-glucose, and vitexin-2-O"-rhamnoside were relevant in the differentiation of P. alata and P. alata var. BRS Pérola do Cerrado, while the flavones isovitexin and isovitexin-2-O"-xyloside were dominant in the grouping of P. setacea and P. setacea var. BRS Pérola do Cerrado, and finally P. cincinnata and P. cincinnata var. BRS Sertão Forte grouped by the influence of the fatty acids, sucrose, flavones (isoorientin and vitexin-2-O"-xyloside), and trigonelline. The varieties of P. setacea, and P. cincinnata are chemically equivalent to the original Passiflora species. However, the PCA analysis showed that the genetic variety of P. alata occupied a different position in the scores plot provoked mainly by the presence of oleanolic acid-3-sophoroside. The 1H NMR metabolic profile can be efficient for quality control evaluation, and can contribute to the investigation of new alternatives for official Passiflora herbal medicines.
Collapse
|
3
|
Jiang Q, Charoensiddhi S, Xue X, Sun B, Liu Y, El-Seedi HR, Wang K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit Rev Food Sci Nutr 2022; 63:7197-7223. [PMID: 36397724 DOI: 10.1080/10408398.2022.2145456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.
Collapse
Affiliation(s)
- Qianer Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Biqi Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Fonseca AM, Geraldi MV, Junior MRM, Silvestre AJ, Rocha SM. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res Int 2022; 160:111665. [DOI: 10.1016/j.foodres.2022.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
|
5
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|
6
|
The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|