1
|
Sakava P, Nyemb JN, Matchawe C, Kumcho MP, Tagatsing MF, Nsawir BJ, Talla E, Atchadé ADT, Laurent S, Henoumont C. Chemical constituents and antibacterial activities of Cameroonian dark brown propolis against potential biofilm-forming bacteria. Nat Prod Res 2024:1-14. [PMID: 39726405 DOI: 10.1080/14786419.2024.2437024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Propolis is a resinous material collected by different bee species from various plant exudates and used to seal holes in honeycombs, smoothen the internal walls, embalm intruders, improve health and prevent diseases. From its n-hexane extract, eight compounds were isolated and characterised as: mangiferonic acid (1); 1-hydroxymangiferonic acid (2), new natural product; mangiferolic acid(3); 27-hydroxymangiferolic acid (4), reported here for the first time as propolis constituent; 27-hydroxymangiferonic acid (5); α-amyrin (6); β-amyrin (7) and lupeol (8). The chemical structures of the isolated compounds were elucidated using spectroscopic methods, such as 1D and 2D-NMR, mass spectrometry and comparison with previous published reports. Compounds 6-8 and n-hexane extract were tested against Gram-negative and Gram-positive bacteria strains using agar disc diffusion and macrodilution techniques. Interestingly, n-hexane extract and compounds 6-8 had good inhibitory activities against Methicillin Resistant Staphylococcus aureus (MRSA) and the clinical Klebsiella pneumoniae isolates. The biological effects of n-hexane extract and its fraction against K. pneumoniae 12 CM and MRSA revealed in the present study suggest that the Cameroonian dark brown propolis could be a potential alternative management of biofilms on medical devices and respiratory skin or infections.
Collapse
Affiliation(s)
- Paul Sakava
- Department of Chemistry, Higher Teacher Training College, The University of Bamenda, Bambili, Cameroon
- Natural Substances and Valorization Laboratory, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Noël Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, University of Maroua, Kaélé, Cameroon
| | - Chelea Matchawe
- Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of the Scientific Research and innovation, Yaounde, Cameroon
- The University Institute of International Development, Mokolo, Far North, Cameroon
| | | | - Maurice Fotsing Tagatsing
- Natural Substances and Valorization Laboratory, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Bonglaisin J Nsawir
- Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of the Scientific Research and innovation, Yaounde, Cameroon
| | - Emmanuel Talla
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Department of chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Alex De Théodore Atchadé
- Natural Substances and Valorization Laboratory, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium
| | - Celine Henoumont
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium
| |
Collapse
|
2
|
Yang H, Ma Y, Gao H, Xie X, Wang H, Li X, Bai Y. Supragingival microbiome variations and the influence of Candida albicans in adolescent orthodontic patients with gingivitis. J Oral Microbiol 2024; 16:2366056. [PMID: 38882240 PMCID: PMC11177713 DOI: 10.1080/20002297.2024.2366056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Gingivitis is a prevalent complication in adolescents undergoing fixed orthodontic treatments. However, changes in the supragingival microbiome associated with gingivitis and the impact of Candida albicans remain elusive. Therefore, we investigated supragingival microbiome discrepancy and C. albicans colonization in adolescent orthodontic patients with gingivitis. Methods Dental plaques were collected from 30 gingivitis patients and 24 healthy adolescents, all undergoing fixed orthodontic treatment. The supragingival microbiome composition was analyzed using 16S rRNA sequencing. C. albicans colonization was determined using fungal culture and real-time quantitative polymerase chain reaction. Results Our analysis revealed significantly heightened microbial diversity in the Gingivitis group. Notably, patients with gingivitis exhibited an enrichment of periodontal pathogens, such as Saccharibacteria (TM7) [G-1], Selenomonas, Actinomyces dentalis, and Selenomonas sputigena. Additionally, 33% of the gingivitis patients tested positive for C. albicans, exhibiting significantly elevated levels of absolute abundance, while all healthy patients tested negative. Significant differences in microbial composition were also noted between C. albicans-positive and -negative samples in the Gingivitis group. Conclusion Significant disparities were observed in the supragingival microbiome of adolescent orthodontic patients with and without gingivitis. The presence of C. albicans in the supragingival plaque may alter the microbiome composition and potentially contribute to gingivitis pathogenesis.
Collapse
Affiliation(s)
- Hao Yang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yansong Ma
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hongyu Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xianju Xie
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hongmei Wang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaowei Li
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Alghutaimel H, Matoug-Elwerfelli M, Alhaji M, Albawardi F, Nagendrababu V, Dummer PMH. Propolis Use in Dentistry: A Narrative Review of Its Preventive and Therapeutic Applications. Int Dent J 2024; 74:365-386. [PMID: 38378400 PMCID: PMC11123522 DOI: 10.1016/j.identj.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Propolis is a resinous substance produced naturally by bees, and it consists of the exudates of plants mixed with enzymes, wax, and pollen. Propolis continues to gain considerable scientific interest due to its potential health benefits. The modern-day use of propolis in pharmaceutical preparations, such as toothpastes, mouthwashes, chewable tablets, mucoadhesive gels, and sprays, is increasing. However, the effectiveness of using propolis-containing pharmaceuticals in dentistry is not clear. The present paper aims to review the literature on the dental applications of propolis in preventive dentistry, periodontics, oral medicine, and restorative dentistry and discuss its clinical effectiveness. A literature search was conducted using Scopus, PubMed, and Web of Science databases. In total, 104 studies were included, of which 46 were laboratory studies, 5 animal studies, and 53 human clinical studies. Overall, the laboratory studies revealed a range of antimicrobial effects of propolis on oral pathogens. Clinical investigations of propolis in biofilm and dental caries control as well as adjuvant periodontal therapies reported positive outcomes in terms of plaque control, pathogenic microbial count reduction, and periodontal tissue inflammation control. Additional investigations included the use of propolis for the management of recurrent aphthous stomatitis, oral mucositis, and cavity disinfection after caries removal as well as the development of a range of restorative dental materials. Based on the reported outcomes of the studies, the clinical usage of propolis has potential. However, the majority of the evidence is derived from studies with flaws in their methodological design, making their results and conclusions questionable. As a consequence, properly designed and well-reported clinical studies are required to affirm the effectiveness of propolis for dental applications. Additionally, the safety of propolis and the optimal concentrations and extraction methods for its clinical use warrant further investigation. Utilisation of standardised propolis extracts will help in quality control of propolis-based products and lead to the achievement of reproducible outcomes in research studies.
Collapse
Affiliation(s)
- Hayat Alghutaimel
- College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia; Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia.
| | | | - Mayada Alhaji
- College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatimah Albawardi
- College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
4
|
Luque-Bracho A, Rosales Y, Vergara-Buenaventura A. The benefits of propolis in periodontal therapy. A scoping review of preclinical and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115926. [PMID: 36400346 DOI: 10.1016/j.jep.2022.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment of periodontal disease (PD) is aimed at adequate control of bacterial plaque. In many patients mechanical methods are unable to eliminate this plaque leading to the need for adjuvant chemical products. Propolis is a natural product that has demonstrated therapeutic properties and has shown to be effective as an anti-inflammatory and antibacterial agent in dentistry. AIM OF THE STUDY Considering the beneficial effects of propolis on various oral conditions, this study aimed to review, update and summarize the available evidence on the benefits of propolis in in vitro studies, animal models, and human clinical trials on non-surgical periodontal therapy. MATERIALS AND METHODS An electronic search in three databases was performed up to December 2021. The search strategy included the terms "propolis" and "periodontal disease" to identify relevant studies on the potential advantages of propolis in periodontal therapy in in vitro studies, animal models, and human clinical trials. RESULTS The search yielded 538 results, discarding 459 studies that did not clearly meet the inclusion criteria. A total of 42 studies were included: 18 in vitro, one animal, and 23 randomized clinical trials. In vitro studies have demonstrated that propolis has antimicrobial activity against periodontal pathogens and clinical studies have reported its use as an adjunct to non-surgical periodontal therapy. The clinical effects of propolis have been reported in conjunction with prophylaxis, polishing, and scaling and root planing (SRP). It has shown to have anti-plaque activity and improve gingival health. Propolis was found to be more effective in improving clinical parameters than conventional treatment (SRP alone) and demonstrated similar efficacy in treating chronic periodontitis compared to positive controls. Only one study reported an allergic reaction. CONCLUSION The evidence available on the benefits of propolis in in vitro studies, animal models, and clinical trials suggests that propolis could be a promising adjunct to conventional therapy of gingivitis and periodontitis. However, further studies are needed to determine its superiority to other therapies in the treatment of PD.
Collapse
Affiliation(s)
- Angel Luque-Bracho
- Facultad de Ciencias de la Salud, Universidad Cientifica del Sur, Lima, Peru.
| | - Yasmin Rosales
- Facultad de Ciencias de la Salud, Universidad Cientifica del Sur, Lima, Peru.
| | | |
Collapse
|
5
|
Zulhendri F, Lesmana R, Tandean S, Christoper A, Chandrasekaran K, Irsyam I, Suwantika AA, Abdulah R, Wathoni N. Recent Update on the Anti-Inflammatory Activities of Propolis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238473. [PMID: 36500579 PMCID: PMC9740431 DOI: 10.3390/molecules27238473] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/09/2022]
Abstract
In recent years, research has demonstrated the efficacy propolis as a potential raw material for pharmaceuticals and nutraceuticals. There is limited report detailing the mechanisms of action of propolis and its bioactive compounds in relation to their anti-inflammatory properties. Thus, the aim of the present review is to examine the latest experimental evidence (2017-2022) regarding the anti-inflammatory properties of propolis. A systematic scoping review methodology was implemented. After applying the exclusion criteria, a total of 166 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several key themes related to the anti-inflammatory properties of propolis were subsequently identified, namely in relation to cancers, oral health, metabolic syndrome, organ toxicity and inflammation, immune system, wound healing, and pathogenic infections. Based on the latest experimental evidence, propolis is demonstrated to possess various mechanisms of action in modulating inflammation towards the regulatory balance and anti-inflammatory environment. In general, we summarize that propolis acts as an anti-inflammatory substance by inhibiting and downregulating TLR4, MyD88, IRAK4, TRIF, NLRP inflammasomes, NF-κB, and their associated pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ, and TNF-α. Propolis also reduces the migration of immune cells such as macrophages and neutrophils, possibly by downregulating the chemokines CXCL9 and CXCL10.
Collapse
Affiliation(s)
- Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Kebun Efi, Kabanjahe 22171, Indonesia
| | - Ronny Lesmana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Andreas Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | | | - Ilham Irsyam
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Auliya A. Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia
| |
Collapse
|
6
|
Boke Sarikahya N, Varol E, Sumer Okkali G, Yucel B, Margaoan R, Nalbantsoy A. Comparative Study of Antiviral, Cytotoxic, Antioxidant Activities, Total Phenolic Profile and Chemical Content of Propolis Samples in Different Colors from Turkiye. Antioxidants (Basel) 2022; 11:antiox11102075. [PMID: 36290798 PMCID: PMC9598055 DOI: 10.3390/antiox11102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Propolis is a valuable natural substance obtained by honey bees after being collected from the bark, resin of trees, plant leaves and mixed with their saliva, and has been widely used for various biological activities. The properties of propolis can vary widely by botanical origin, location of the hives and colony population. It is thought that the color of propolis is one of the main factors determining its acceptability and originates from the flower markers, pollen and nectar of some plants and is directly related to its chemical content. It is important to compare and standardize the colors, chemical content and biological activities of propolis in our country, which has a rich endemic plant diversity. Thus, in this study, the color indexes of 39 propolis samples from different locations in Turkiye were determined by Lovibond Tintometer, for the first time. The color index, total phenolic content, cytotoxic and antioxidant activities relationship of propolis and two commercial propolis samples were also investigated by HCA and PCA. Turkish propolis, which is defined by its color indices, chemical contents and many different activity potentials, such as antioxidant, antiviral and cytotoxic activity, will find use in many fields from medicine to cosmetics with this study.
Collapse
Affiliation(s)
- Nazli Boke Sarikahya
- Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
- Correspondence: (N.B.S.); (R.M.)
| | - Ekin Varol
- Department of Animal Science, Faculty of Agriculture, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Gaye Sumer Okkali
- Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Banu Yucel
- Department of Animal Science, Faculty of Agriculture, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (N.B.S.); (R.M.)
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
7
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
8
|
Lotif MAL, Valadas LAR, Fechine FV, Fonseca SGC, Bandeira MAM, Dantas TCFB, Rodrigues Neto EM, Squassi A, Fonteles MMF. A double-blind randomized clinical trial of Brazilian red propolis dentifrice efficacy in orthodontic patients. J Oral Sci 2021; 64:28-32. [PMID: 34955484 DOI: 10.2334/josnusd.21-0270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The objective was to evaluate the efficacy of a dentifrice containing Brazilian Red Propolis (BRP) against salivary Lactobacillus spp. and plaque formation. METHODS This was a randomized, double-blind clinical trial. Forty-two participants were randomized into two groups according to the dentifrice employed: G1 (fluoridated BRP dentifrice) and G2 (fluoridated common dentifrice). Saliva was collected and the visible plaque index (VPI) was recorded at the baseline (D0) and 4 weeks after day 0 (D28). Microbiological analysis was performed using two dilutions. Lactobacillus spp. isolates were identified and their abundance was expressed as log (CFU/mL). RESULTS For the first dilution, the counts of Lactobacillus spp. in G1 was 1.15 ± 0.41 at D0 and 0.68 ± 0.15 at D28 (P < 0.05) and in G2 it was 1.33 ± 0.52 at D0 and 1.84 ± 0.39 at D28 (P < 0.05). For the second dilution, the corresponding values in G1 and G2 were 0.87 ± 0.34 and 0.64 ± 0.37, respectively (P = 0.1547), and 1.54 ± 0.47 and 1.62 ± 0.37, respectively (P = 0.9999). The corresponding VPI values for G1 and G2 were 38.10 ± 17.95 and 20.60 ± 16.44, respectively (P < 0.05), and 38.38 ± 19.65 and 27.40 ± 14.63, respectively (P = 0.03). CONCLUSION The dentifrice containing BRP showed antimicrobial activity against Lactobacillus spp. and decreased the VPI for up to 4 weeks.
Collapse
Affiliation(s)
| | - Lídia Audrey R Valadas
- Pharmacy, Dentistry and Nursing College, Federal University of Ceará.,Department of Preventive and Community Dentistry, University of Buenos Aires
| | | | - Said G C Fonseca
- Pharmacy, Dentistry and Nursing College, Federal University of Ceará
| | | | | | | | - Aldo Squassi
- Department of Preventive and Community Dentistry, University of Buenos Aires
| | | |
Collapse
|
9
|
Oliveira JMDS, Cavalcanti TFS, Leite IF, Dos Santos DMRC, Porto ICCDM, de Aquino FLT, Sonsin AF, Lins RML, Vitti RP, de Freitas JD, Barreto EDO, de Souza ST, Kamiya RU, do Nascimento TG, Tonholo J. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front Pharmacol 2021; 12:787633. [PMID: 34912230 PMCID: PMC8667603 DOI: 10.3389/fphar.2021.787633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 μg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 μg/mm3, Wsl from 3.66 to 4.20 μg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448–455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.
Collapse
Affiliation(s)
- José Marcos Dos Santos Oliveira
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
| | - Théo Fortes Silveira Cavalcanti
- Postgraduate Program in Materials, Center of Technology, Federal University of Alagoas, Maceió, Brazil.,Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Isabel Cristina Celerino de Moraes Porto
- Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Lima Torres de Aquino
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Artur Falqueto Sonsin
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Emiliano de Oliveira Barreto
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Samuel Teixeira de Souza
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | - Regianne Umeko Kamiya
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ticiano Gomes do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Josealdo Tonholo
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
10
|
Bee Venom, Honey, and Royal Jelly in the Treatment of Bacterial Infections of the Oral Cavity: A Review. Life (Basel) 2021; 11:life11121311. [PMID: 34947842 PMCID: PMC8709083 DOI: 10.3390/life11121311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Oral diseases affect a very large number of people, and the applied pharmacological methods of treatment and/or prevention have serious side effects. Therefore, it is necessary to search for new, safer methods of treatment. Natural bee products, such as honey, royal jelly, and bee venom, can be a promising alternative in the treatment of oral cavity bacterial infections. Thus, we performed an extensive literature search to find and summarize all articles about the antibacterial activity of honey, royal jelly, and bee venom. Our analysis showed that these bee products have strong activity against the bacterial strains causing caries, periodontitis, gingivitis, pharyngitis, recurrent aphthous ulcers, supragingival, and subgingival plaque. An analysis of average MIC values showed that honey and royal jelly have the highest antimicrobial activity against Porphyromonas gingivalis and Fusobacterium nucleatum. In turn, bee venom has an antibacterial effect against Streptococcus mutans. Streptococcus sobrinus and Streptoccus pyogenes were the most resistant species to different types of honey, and royal jelly, respectively. Moreover, these products are safer in comparison to the chemical compounds used in the treatment of oral cavity bacterial infections. Since the antimicrobial activity of bee products depends on their chemical composition, more research is needed to standardize the composition of these compounds before they could be used in the treatment of oral cavity bacterial infections.
Collapse
|
11
|
da Silva Barboza A, Aitken-Saavedra JP, Ferreira ML, Fábio Aranha AM, Lund RG. Are propolis extracts potential pharmacological agents in human oral health? - A scoping review and technology prospecting. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113846. [PMID: 33485981 DOI: 10.1016/j.jep.2021.113846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antimicrobial potential of propolis - a honey bee product - was correlated with its traditional use as a natural medicine, mainly known for antimicrobial and antioxidant properties. Moreover, research on natural products in dentistry has increased in recent years in the search for products with greater therapeutic activity, lower toxicity, better biocompatibility, and more affordable cost to the population. OBJECTIVE Considering that the beneficial effect of propolis is acknowledged for several oral conditions, this study aimed to synthesize the research and technological forecasts of existing evidence on the use of propolis extract as a potential antimicrobial agent in dentistry. METHODS Studies were identified through an investigation in the PubMed, Web of Science, Scopus, and Scielo electronic databases. Additionally, the following patent databases were screened: Google Patents, WIPO, INPI, Espacenet, and Questel Orbit. The data were tabulated and analyzed using Microsoft Office Excel 2013 and Questel Orbit. RESULTS A total of 174 scientific articles and 276 patents fulfilled all the criteria and were included in the investigation. The highest number of patents (n = 144) was produced by China. Additionally, the most prevalent studies were performed on an experimental basis (72%), followed by clinical studies (n = 27) and review articles (n = 21). The effect of using propolis has been extensively observed in oral care products, periodontics, pathology, and cariology, among other dental specialties. CONCLUSION It was possible to identify the current scientific and technological scenario of the application of propolis in dentistry, with the number of patents increasing in recent years. However, all studies related to the use of propolis in dentistry have shown a potentially safe antimicrobial agent in an extensive field of application.
Collapse
Affiliation(s)
- Andressa da Silva Barboza
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil
| | - Juan Pablo Aitken-Saavedra
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil; Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Monika Lamas Ferreira
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil
| | - Andreza Maria Fábio Aranha
- Post-graduate Program in Integrated Dental Sciences, School of Dentistry, University of Cuiabá, Cuiabá, MT, Brazil
| | - Rafael Guerra Lund
- Post-graduate Program in Dentistry, Laboratory of Oral Microbiology, School of Dentistry, Federal University of Pelotas, RS, Brazil; Post-graduate Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Dezmirean DS, Paşca C, Moise AR, Bobiş O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. PLANTS 2020; 10:plants10010022. [PMID: 33374275 PMCID: PMC7823854 DOI: 10.3390/plants10010022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Propolis is a resinous mixture, made by the honeybees from substances collected from tree or other plant buds, plant exudates, or resins found in the stem, branches, or leaves of different plants. The geographical origin of propolis is given by plant sources from respective areas. Different studies have classified this bee product according to the vegetal material from the same areas. Poplar-type propolis has the widest spread in the world, in the temperate zones from Europe, Asia, or North America. The name is given by the main plant source from where the bees are collecting the resins, although other vegetal sources are present in the mentioned areas. Different Pinus spp., Prunus spp., Acacia spp. and also Betula pendula, Aesculus hippocastanum, and Salix alba are important sources of resins for "poplar-type" propolis. The aim of this review is to identify the vegetal material's chemical composition and activities of plant resins and balms used by the bees to produce poplar-type propolis and to compare it with the final product from similar geographical regions. The relevance of this review is to find the similarities between the chemical composition and properties of plant sources and propolis. The latest determination methods of bioactive compounds from plants and propolis are also reviewed.
Collapse
Affiliation(s)
- Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Claudia Paşca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Otilia Bobiş
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-746-027-940
| |
Collapse
|
13
|
Arruda C, Ribeiro VP, Mejía JAA, Almeida MO, Goulart MO, Candido ACBB, dos Santos RA, Magalhães LG, Martins CHG, Bastos JK. Green Propolis: Cytotoxic and Leishmanicidal Activities of Artepillin C, p-Coumaric Acid, and Their Degradation Products. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43450-020-00043-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Arruda C, Pena Ribeiro V, Oliveira Almeida M, Aldana Mejía JA, Casoti R, Kenupp Bastos J. Effect of light, oxygen and temperature on the stability of artepillin C and p-coumaric acid from Brazilian green propolis. J Pharm Biomed Anal 2019; 178:112922. [PMID: 31679843 DOI: 10.1016/j.jpba.2019.112922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023]
Abstract
Brazilian Green Propolis (BGP) is an important bee product, which displays important biological activities, making it valuable in the international market. The major prenylated phenolic compound in BPG is (E)-artepillin C, along with its precursor (E)-p-coumaric acid, both contributing to the biological effects of BGP. Taking that into account, it was evaluated the effect of light, temperature and air oxygen in their content to establish the best storage and transport conditions for crude BGP and the pure compounds. For that, (E)-artepillin C and (E)-p-coumaric acid were initially submitted to degradation for five days under sunlight and high temperature (50 °C), furnishing three major (E)-Artepillin C isomers and one from (E)-p-coumaric acid. Then, it was developed and validated a Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method for quantifying these compounds in crude BGP and in its extracts. In the stability studies, it was used a Full Factorial and Central Composite Design to establish the desirable storage conditions. (E)-Artepillin C, both pure and in BGP should be kept protected from light and storage below -2.5 °C. (E)-p-Coumaric acid can be stored at room temperature. Therefore, the best storage and transport conditions to keep the content of both compounds in BGP are protection from light at low temperatures.
Collapse
Affiliation(s)
- Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Marília Oliveira Almeida
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Rosana Casoti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|