1
|
Madhukar G, Haque MA, Khan S, Kim JJ, Danishuddin. E3 ubiquitin ligases and their therapeutic potential in disease Management. Biochem Pharmacol 2025; 236:116875. [PMID: 40120724 DOI: 10.1016/j.bcp.2025.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Ubiquitination is a vital post-translational modification that regulates protein stability and various cellular processes through the addition of ubiquitin molecules. Central to this process are E3 ubiquitin ligases, which determine the specificity of ubiquitination by coordinating the attachment of ubiquitin to target proteins, influencing their degradation, localization, and activity. E3 ubiquitin ligases are involved in numerous cellular pathways, including DNA repair, cell proliferation, and immune responses. Dysregulation of E3 ubiquitin ligases is often associated with cancer, contributing to tumor progression and resistance to therapies. The development of targeted protein degraders, such as proteolysis-targeting chimeras (PROTACs), represents a significant advancement in drug discovery, leveraging the specificity of E3 ubiquitin ligases to selectively eliminate pathogenic proteins. However, challenges remain in translating this knowledge into effective therapies, including issues related to tissue-specific targeting and off-target effects. The limitations also include a limited understanding of ligase-substrate interactions that includes both the identification of novel E3 ligases and their substrates, as well as understanding the dynamic, context-dependent nature of these interactions, which can vary across tissue types or disease states This review emphasizes the therapeutic potential of E3 ubiquitin ligases, exploring their diverse roles in disease, their contribution to targeted degradation strategies while highlighting the need for further research to overcome current limitations and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Geet Madhukar
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Tracy W, Sharland JC, Ly D, Davies GHM, Musaev DG, Fang H, Moreno J, Cherney EC, Davies HML. Diversity Synthesis Using Glutarimides as Rhodium Carbene Precursors in Enantioselective C-H Functionalization and Cyclopropanation. J Am Chem Soc 2025; 147:11336-11345. [PMID: 40100075 PMCID: PMC11969559 DOI: 10.1021/jacs.5c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Cereblon E3 ligase modulatory drugs (CELMoDs) can be used to target proteins and mark them for proteasomal degradation by recruiting them to cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase complex. Modifications to the stereochemistry and regiochemistry of distal functionality on CELMoDs have been shown to have large effects on degradation activity and selectivity; however, methods allowing the rapid and selective introduction of enantioenriched moieties are rare. Herein, we report that classical CRBN-binding glutarimide cores can be successfully derivatized to aryl diazoacetates. These diazo derivatives, when in the presence of a dirhodium catalyst, successfully undergo high-yielding and highly enantioselective C-H functionalization of hydrocarbons and cyclopropanation of styrene. These products can be used to create not only molecular glue degrader-like compounds but also intermediates that can be elaborated into effective bifunctional ligand-directed degraders. Our findings highlight both the effectiveness of dirhodium catalysis in a drug discovery context and a new method for preparing diverse and stereoenriched glutarimide-containing compounds.
Collapse
Affiliation(s)
- William
F. Tracy
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Duc Ly
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Geraint H. M. Davies
- Discovery
and Development Sciences, Bristol Myers
Squibb, Cambridge, Massachusetts 02143, United States
| | | | - Hua Fang
- Discovery
and Development Sciences, Bristol Myers
Squibb, Princeton, New Jersey 08543, United States
| | - Jesus Moreno
- Discovery
and Development Sciences, Bristol Myers
Squibb, San Diego, California 92121, United States
| | - Emily C. Cherney
- Discovery
and Development Sciences, Bristol Myers
Squibb, Princeton, New Jersey 08543, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
4
|
Zhang L, Liu S, He J, Hu Z, Zhu L, Huang H, Gao Q, Wang D, Chen L, Zhang X, Liu R, Wang J, Song Y, Zeng K, Li X, Chen Y, Zou X, Ma S, Wang X, Xu G, Liu W, Liu B. Identification of MORF4L1 as an endogenous substrate of CRBN and its potential role as a therapeutic target in cancer. Sci Rep 2025; 15:2384. [PMID: 39827217 PMCID: PMC11742918 DOI: 10.1038/s41598-024-82941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is essential for cellular homeostasis, regulating the degradation of proteins involved in key processes such as cell cycle, apoptosis, and DNA repair. Dysregulation of the UPS is implicated in hepatocellular carcinoma (HCC), contributing to tumor progression and therapeutic resistance. The cereblon (CRBN) E3 ubiquitin ligase complex is a crucial component of the UPS, particularly in modulating protein degradation in response to small-molecule modulators like thalidomide. However, the endogenous substrates of CRBN in solid tumors like HCC remain poorly characterized. Here, we identify MORF4L1, a member of the MRG family involved in chromatin remodeling and DNA damage response, as a substrate of CRBN. Using proteomic analysis, co-immunoprecipitation, and structural modeling, we demonstrate that CRBN promotes MORF4L1 degradation under physiological conditions, which is further enhanced by the modulator CC-885. Importantly, MORF4L1 is upregulated in multiple cancers, including HCC, suggesting a broader role in tumorigenesis. Our findings reveal MORF4L1 as a physiological CRBN substrate and highlight the therapeutic potential of targeting CRBN substrates in cancer.
Collapse
Affiliation(s)
- Luyao Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030, China
| | - Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhongke Hu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hongyi Huang
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xingyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ruotong Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiayun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaile Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiuming Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xun Zou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guofeng Xu
- Department of Pediatric Urology, Xinhua Hospital Affiliated to ShanghaiJiao Tong University School of Medicine, Shanghai, China.
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Patel TH, van Rhee F, Al Hadidi S. Cereblon E3 Ligase Modulators Mezigdomide and Iberdomide in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:762-769. [PMID: 39003099 DOI: 10.1016/j.clml.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Multiple Myeloma (MM) remains a challenging hematological malignancy despite significant advancements made during the past 2 decades. Outcomes have improved by incorporating immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies into treatment algorithms that include high dose chemotherapy and autologous hematopoietic stem cell transplantation. However, many patients may eventually relapse despite these innovations. Newer therapies targeting B-Cell Maturation Antigen (BCMA) offer promise for patients with relapsed or refractory disease. BCMA-targeted therapies carry notable side effects, necessitating vigilant monitoring and proactive infection prevention measures. They can also induce considerable immunosuppression, attributed to lower levels of immunoglobulins and increased susceptibility to infections. There is still a need for alternative treatment options with different mechanisms of action that can be easily administered and have a better safety profile. In addition, pomalidomide only overcomes lenalidomide refractoriness in a subset of patients. This review aims to explore 2 next-generation cereblon E3 ligase modulators (CELMoDs), Mezigdomide (CC92480), and Iberdomide (CC-220). We will discuss the biological aspects of these agents, including their mechanisms of action, efficacy, and toxicity profile, and provide a comprehensive review of current literature. Special attention will be paid to ongoing and future clinical trials that provide insights into the potential of these novel therapies in the management of MM.
Collapse
Affiliation(s)
- Tanvi H Patel
- Department of Hematology and Oncology, Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Frits van Rhee
- Department of Hematology and Oncology, Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Samer Al Hadidi
- Department of Hematology and Oncology, Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR.
| |
Collapse
|
6
|
Thapa R, Bhat AA, Gupta G, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Prasad GVS, Pramanik A, Ali H. CRBN-PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications. Chem Biol Drug Des 2024; 104:e70009. [PMID: 39496477 DOI: 10.1111/cbdd.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Cereblon (CRBN), a member of the E3 ubiquitin ligase complex, has gained significant attention as a therapeutic target in cancer. CRBN regulates the degradation of various proteins in cancer progression, including transcription factors and signaling molecules. PROTACs (proteolysis-targeting chimeras) are a novel approach that uses the cell's degradation system to remove disease-causing proteins selectively. CRBN-dependent PROTACs work by tagging harmful proteins for destruction through the ubiquitin-proteasome system. This strategy offers several advantages over traditional protein inhibition methods, including the potential to overcome drug resistance. Recent progress in developing CRBN-based PROTACs has shown promising preclinical results in both hematologic malignancies and solid tumors. Additionally, CRBN-based PROTACs have enhanced our understanding of CRBN's role in cancer, potentially serving as biomarkers for patient stratification and predicting therapeutic responses. In this review, we delineate the mechanisms of action for CRBN-dependent PROTACs (CRBN-PROTACs), summarize recent advances in preclinical and clinical applications, and provide our perspective on future development.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
7
|
Chen LM, Shin C, DeLano TJ, Carretero-Cerdán A, Gheibi G, Reisman SE. Ni-Catalyzed Asymmetric Reductive Arylation of α-Substituted Imides. J Am Chem Soc 2024; 146:29523-29530. [PMID: 39413404 PMCID: PMC11528402 DOI: 10.1021/jacs.4c09327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
α-Aryl imides are common structural motifs in bioactive molecules and proteolysis-targeting chimeras designed for targeted protein degradation. An asymmetric Ni-catalyzed reductive cross-coupling of imide electrophiles and (hetero)aryl halides has been developed to synthesize enantioenriched α-arylglutarimides from simple starting materials. Judicious selection of electrophile pairs allows for coupling of both electron-rich and electron-deficient (hetero)aryl halides in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Chungkeun Shin
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Travis J. DeLano
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alba Carretero-Cerdán
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division
of Theoretical Chemistry & Biology, CBH School, KTH Royal Institute of Technology, Teknikringen 30, Stockholm S-10044, Sweden
| | - Golsa Gheibi
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Tracy WF, Davies GHM, Jia L, Evans ED, Sun Z, Buenviaje J, Khambatta G, Yu S, Shi L, Shanmugasundaram V, Moreno J, Cherney EC, Davies HML. Asymmetric Dirhodium-Catalyzed Modification of Immunomodulatory Imide Drugs and Their Biological Assessment. ACS Med Chem Lett 2024; 15:1575-1583. [PMID: 39291008 PMCID: PMC11403733 DOI: 10.1021/acsmedchemlett.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Cereblon (CRBN) has been successfully co-opted to affect the targeted degradation of "undruggable" proteins with immunomodulatory imide drugs (IMiDs). IMiDs act as molecule glues that facilitate ternary complex formation between CRBN and a target protein, leading to ubiquitination and proteasomal degradation. Subtle structural modifications often cause profound and sometimes unpredictable changes in the degradation selectivity. Herein, we successfully utilize enantioselective cyclopropanation and cyclopropenation on intact glutarimides to enable the preparation of stereochemically and regiochemically matched molecular pairs for structure-activity relationship (SAR) analysis across several classical CRBN neosubstrates. The resulting glutarimide analogs were found to reside in unique chemical space when compared to other IMiDs in the public domain. SAR studies revealed that, in addition to the more precedented impacts of regiochemistry, stereochemical modifications far from the glutarimide can lead to divergent neosubstrate selectivity. These findings emphasize the importance of enabling enantioselective methods for glutarimide-containing compounds to tune the degradation selectivity.
Collapse
Affiliation(s)
- William F Tracy
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Geraint H M Davies
- Small Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts 02143, United States
| | - Lei Jia
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Ethan D Evans
- Small Molecule Drug Discovery, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Zhenghang Sun
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Jennifer Buenviaje
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Gody Khambatta
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Shan Yu
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Lihong Shi
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | | | - Jesus Moreno
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Emily C Cherney
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Huw M L Davies
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Li P, Hu X, Fan Z, Sun S, Ran Q, Wei T, Wei P, Jiang Q, Yan J, Yang N, Jia C, Yang T, Mao Y, Cai X, Xu T, Zhao Z, Qian X, Qin W, Zhuang X, Fan F, Xiao J, Zheng Z, Li S. Novel potent molecular glue degraders against broad range of hematological cancer cell lines via multiple neosubstrates degradation. J Hematol Oncol 2024; 17:77. [PMID: 39218923 PMCID: PMC11367868 DOI: 10.1186/s13045-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted protein degradation of neosubstrates plays a crucial role in hematological cancer treatment involving immunomodulatory imide drugs (IMiDs) therapy. Nevertheless, the persistence of inevitable drug resistance and hematological toxicities represents a significant obstacle to their clinical effectiveness. METHODS Phenotypic profiling of a small molecule compounds library in multiple hematological cancer cell lines was conducted to screen for hit degraders. Molecular dynamic-based rational design and cell-based functional assays were conducted to develop more potent degraders. Multiple myeloma (MM) tumor xenograft models were employed to investigate the antitumor efficacy of the degraders as single or combined agents with standard of care agents. Unbiased proteomics was employed to identify multiple therapeutically relevant neosubstrates targeted by the degraders. MM patient-derived cell lines (PDCs) and a panel of solid cancer cell lines were utilized to investigate the effects of candidate degrader on different stage of MM cells and solid malignancies. Unbiased proteomics of IMiDs-resistant MM cells, cell-based functional assays and RT-PCR analysis of clinical MM specimens were utilized to explore the role of BRD9 associated with IMiDs resistance and MM progression. RESULTS We identified a novel cereblon (CRBN)-dependent lead degrader with phthalazinone scaffold, MGD-4, which induced the degradation of Ikaros proteins. We further developed a novel potent candidate, MGD-28, significantly inhibited the growth of hematological cancer cells and induced the degradation of IKZF1/2/3 and CK1α with nanomolar potency via a Cullin-CRBN dependent pathway. Oral administration of MGD-4 and MGD-28 effectively inhibited MM tumor growth and exhibited significant synergistic effects with standard of care agents. MGD-28 exhibited preferentially profound cytotoxicity towards MM PDCs at different disease stages and broad antiproliferative activity in multiple solid malignancies. BRD9 modulated IMiDs resistance, and the expression of BRD9 was significant positively correlated with IKZF1/2/3 and CK1α in MM specimens at different stages. We also observed pronounced synergetic efficacy between the BRD9 inhibitor and MGD-28 for MM treatment. CONCLUSIONS Our findings present a strategy for the multi-targeted degradation of Ikaros proteins and CK1α against hematological cancers, which may be expanded to additional targets and indications. This strategy may enhance efficacy treatment against multiple hematological cancers and solid tumors.
Collapse
Affiliation(s)
- Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaotong Hu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiya Fan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qijie Ran
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, 430012, China
| | - Ting Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengli Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qiyu Jiang
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jian Yan
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Changkai Jia
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tingting Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaqiu Mao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xu Cai
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiyuan Zhao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaomei Zhuang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Feng Fan
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Junhai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
10
|
Sasayama T, Hamada T, Tanaka K, Nagashima H, Yamanishi S, Ueyama T. Potential of GSPT1 as a novel target for glioblastoma therapy. Cell Death Dis 2024; 15:572. [PMID: 39117611 PMCID: PMC11310507 DOI: 10.1038/s41419-024-06967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Glioblastoma is the most common malignant brain tumor in adults, the survival rate of which has not significantly improved over the past three decades. Therefore, there is an urgent need to develop novel treatment modalities. We previously reported that G1 to S phase transition 1 (GSPT1) depletion induces delayed cell cycle in primary astrocytes. Herein, we examined the potential of GSPT1 as a novel target for glioblastoma therapy. CC-885, a cereblon modulator that degrades GSPT1 by bridging GSPT1 to the CRL4 E3 ubiquitin ligase complex, was administered to nude mice with transplanted brain tumors of U87 glioblastoma cells. The survival period was significantly longer in CC-885 treated mice than in control mice. Furthermore, we generated GSPT1-knockout (KO) U87 cells and GSPT1-KO U87 cells with stable overexpression of FLAG-tagged GSPT1 (Rescued GSPT1-KO). Mice with transplanted GSPT1-KO U87 cells and Rescued GSPT1-KO U87 cells showed significantly longer and similar survival periods, respectively, as those with wild-type (WT) U87 cells. GSPT1-KO U87 cells showed enhanced apoptosis, detected by cleaved PARP1, compared to WT U87 cells. Brain tumors with transplantation of GSPT1-KO U87 cells also showed enhanced apoptosis compared to those with transplantation of WT and Rescued GSPT1-KO U87 cells. GSPT1 expression was confirmed in patients with glioblastoma. However, the clinical study using 87 glioblastoma samples showed that GSPT1 mRNA levels were not associated with overall survival. Taken together, we propose that GSPT1 is an essential protein for glioblastoma growth, but not its malignant characteristics, and that GSPT1 is a potential target for developing glioblastoma therapeutics.
Collapse
Affiliation(s)
- Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Hamada
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shunsuke Yamanishi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
11
|
Vetma V, Perez LC, Eliaš J, Stingu A, Kombara A, Gmaschitz T, Braun N, Ciftci T, Dahmann G, Diers E, Gerstberger T, Greb P, Kidd G, Kofink C, Puoti I, Spiteri V, Trainor N, Weinstabl H, Westermaier Y, Whitworth C, Ciulli A, Farnaby W, McAulay K, Frost AB, Chessum N, Koegl M. Confounding Factors in Targeted Degradation of Short-Lived Proteins. ACS Chem Biol 2024; 19:1484-1494. [PMID: 38958654 DOI: 10.1021/acschembio.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Targeted protein degradation has recently emerged as a novel option in drug discovery. Natural protein half-life is expected to affect the efficacy of degrading agents, but to what extent it influences target protein degradation has not been systematically explored. Using simple mathematical modeling of protein degradation, we find that the natural half-life of a target protein has a dramatic effect on the level of protein degradation induced by a degrader agent which can pose significant hurdles to screening efforts. Moreover, we show that upon screening for degraders of short-lived proteins, agents that stall protein synthesis, such as GSPT1 degraders and generally cytotoxic compounds, deceptively appear as protein-degrading agents. This is exemplified by the disappearance of short-lived proteins such as MCL1 and MDM2 upon GSPT1 degradation and upon treatment with cytotoxic agents such as doxorubicin. These findings have implications for target selection as well as for the type of control experiments required to conclude that a novel agent works as a bona fide targeted protein degrader.
Collapse
Affiliation(s)
- Vesna Vetma
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Laura Casares Perez
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Ján Eliaš
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Andrea Stingu
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Anju Kombara
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Nina Braun
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Tuncay Ciftci
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Georg Dahmann
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Emelyne Diers
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | | | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Giorgia Kidd
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | | | - Ilaria Puoti
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Valentina Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Nicole Trainor
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | | | | | - Claire Whitworth
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Kirsten McAulay
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Aileen B Frost
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ Dundee, Scotland, U.K
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, U.K
| | - Nicola Chessum
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| |
Collapse
|
12
|
Zhang S, Nie S, Ma G, Shen M, Kong L, Zuo Z, Li Y. Identification of novel GSPT1 degraders by virtual screening and bioassay. Eur J Med Chem 2024; 273:116524. [PMID: 38795517 DOI: 10.1016/j.ejmech.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
GSPT1 plays crucial physiological functions, such as terminating protein translation, overexpressed in various tumors. It is a promising anti-tumor target, but is also considered as an "undruggable" protein. Recent studies have found that a class of small molecules can degrade GSPT1 through the "molecular glue" mechanism with strong antitumor activity, which is expected to become a new therapy for hematological malignancies. Currently available GSPT1 degraders are mostly derived from the scaffold of immunomodulatory imide drug (IMiD), thus more active compounds with novel structure remain to be found. In this work, using computer-assisted multi-round virtual screening and bioassay, we identified a non-IMiD acylhydrazone compound, AN5782, which can reduce the protein level of GPST1 and obviously inhibit the proliferation of tumor cells. Some analogs were obtained by a substructure search of AN5782. The structure-activity relationship analysis revealed possible interactions between these compounds and CRBN-GSPT1. Further biological mechanistic studies showed that AN5777 decreased GSPT1 remarkably through the ubiquitin-proteasome system, and its effective cytotoxicity was CRBN- and GSPT1-dependent. Furthermore, AN5777 displayed good antiproliferative activities against U937 and OCI-AML-2 cells, and dose-dependently induced G1 phase arrest and apoptosis. The structure found in this work could be good start for antitumor drug development.
Collapse
Affiliation(s)
- Shuqun Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shiyun Nie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China
| | - Guangchao Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China
| | - Meiling Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingmei Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China
| | - Zhili Zuo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yan Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Ministry of Education, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
13
|
Inoue Y, Oda A, Maeda Y, Sumitani R, Oura M, Sogabe K, Maruhashi T, Takahashi M, Fujii S, Nakamura S, Miki H, Hiasa M, Teramachi J, Harada T, Abe M. Ex vivo expansion and activation of Vγ9Vδ2 T cells by CELMoDs in combination with zoledronic acid. Int J Hematol 2024; 119:626-630. [PMID: 38581458 DOI: 10.1007/s12185-024-03763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
As multiple myeloma (MM) progresses, immune effector cells decrease in number and function and become exhausted. This remains an insurmountable clinical issue that must be addressed by development of novel modalities to revitalize anti-MM immunity. Human Vγ9Vδ2 T (Vδ2+ γδ T) cells serve as the first line of defense against pathogens as well as tumors and can be expanded ex vivo from peripheral blood mononuclear cells (PBMCs) upon treatment with amino-bisphosphonates in combination with IL-2. Here, we demonstrated that next-generation immunomodulators called cereblon E3 ligase modulators (CELMoDs), as well as lenalidomide and pomalidomide, expanded Th1-like Vδ2+ γδ T cells from PBMCs in the presence of zoledronic acid (ZA). However, the expansion of Th1-like Vδ2+ γδ T cells by these immunomodulatory drugs was abolished under IL-2 blockade, although IL-2 production was induced in PBMCs. BTN3A1 triggers phosphoantigen presentation to γδ T-cell receptors and is required for γδ T-cell expansion and activation. ZA but not these immunomodulatory drugs upregulated BTN3A1 in monocytes. These results suggest that immunomodulatory drugs and ZA have cooperative roles in expansion of Th1-like Vδ2+ γδ T cells, and provide the important knowledge for clinical application of human Vδ2+ γδ T cells as effector cells.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Medical Technology, Tokushima University Hospital, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Yusaku Maeda
- Department of Hematology, Tokushima University Hospital, Tokushima, Japan
| | - Ryohei Sumitani
- Department of Hematology, Tokushima University Hospital, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Tokushima University Hospital, Tokushima, Japan
| | - Kimiko Sogabe
- Department of Hematology, Tokushima University Hospital, Tokushima, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Mamiko Takahashi
- Department of Hematology, Tokushima University Hospital, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Tokushima University Hospital, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan.
| | - Masahiro Abe
- Department of Hematology, Kawashima Hospital, Tokushima, 770-0011, Japan.
| |
Collapse
|
14
|
Zheng X, Shen J, Jiang H, Tian M, Wang Q, Guo K, Chen R, Xia Q, Yan Q, Du L, Duan S. Exploring the multifaceted role of GCN1: Implications in cellular responses and disease pathogenesis. Biomed Pharmacother 2024; 175:116681. [PMID: 38705128 DOI: 10.1016/j.biopha.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
GCN1 is a highly conserved protein present widely across eukaryotes. As an upstream activator of protein kinase GCN2, GCN1 plays a pivotal role in integrated stress responses, such as amino acid starvation and oxidative stress. Through interaction with GCN2, GCN1 facilitates the activation of GCN2, thus initiating downstream signaling cascades in response to cellular stressors. In these contexts, the activation of GCN2 necessitates the presence and action of GCN1. Notably, GCN1 also operates as a ribosome collision sensor, contributing significantly to the translation quality control pathway. These discoveries offer valuable insights into cellular responses to internal stresses, vital for maintaining cellular homeostasis. Additionally, GCN1 exhibits the ability to regulate the cell cycle and suppress inflammation, among other processes, independently of GCN2. Our review outlines the structural characteristics and biological functions of GCN1, shedding light on its significant involvement in the onset and progression of various cancer and non-cancer diseases. Our work underscores the role of GCN1 in the context of drug therapeutic effects, hinting at its potential as a promising drug target. Furthermore, our work delves deep into the functional mechanisms of GCN1, promising innovative avenues for the diagnosis and treatment of diseases in the future. The exploration of GCN1's multifaceted roles not only enhances our understanding of its mechanisms but also paves the way for novel therapeutic interventions. The ongoing quest to unveil additional functions of GCN1 holds the promise of further enriching our comprehension of its mode of action.
Collapse
Affiliation(s)
- Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hongting Jiang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Kailin Guo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Ruixiu Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qibin Yan
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Lihua Du
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
15
|
Meermeier EW, Bergsagel PL, Chesi M. Next-Generation Therapies for Multiple Myeloma. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:351-371. [PMID: 39364307 PMCID: PMC11449476 DOI: 10.1146/annurev-cancerbio-061421-014236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Recent therapeutic advances have significantly improved the outcome for patients with multiple myeloma (MM). The backbone of successful standard therapy is the combination of Ikaros degraders, glucocorticoids, and proteasome inhibitors that interfere with the integrity of myeloma-specific superenhancers by directly or indirectly targeting enhancer-bound transcription factors and coactivators that control expression of MM dependency genes. T cell engagers and chimeric antigen receptor T cells redirect patients' own T cells onto defined tumor antigens to kill MM cells. They have induced complete remissions even in end-stage patients. Unfortunately, responses to both conventional therapy and immunotherapy are not durable, and tumor heterogeneity, antigen loss, and lack of T cell fitness lead to therapy resistance and relapse. Novel approaches are under development to target myeloma-specific vulnerabilities, as is the design of multimodality immunological approaches, including and beyond T cells, that simultaneously recognize multiple epitopes to prevent antigen escape and tumor relapse.
Collapse
Affiliation(s)
| | | | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
16
|
Vicente ATS, Salvador JAR. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: overview and future perspectives. MedComm (Beijing) 2024; 5:e575. [PMID: 38845697 PMCID: PMC11154823 DOI: 10.1002/mco2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.
Collapse
Affiliation(s)
- André T. S. Vicente
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| |
Collapse
|
17
|
Tracy W, Davies GHM, Grant LN, Ganley JM, Moreno J, Cherney EC, Davies HML. Anhydrous and Stereoretentive Fluoride-Enhanced Suzuki-Miyaura Coupling of Immunomodulatory Imide Drug Derivatives. J Org Chem 2024; 89:4595-4606. [PMID: 38452367 PMCID: PMC11002932 DOI: 10.1021/acs.joc.3c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/09/2024]
Abstract
Immunomodulatory imide drugs form the core of many pharmaceutically relevant structures, but Csp2-Csp2 bond formation via metal-catalyzed cross coupling is difficult due to the sensitivity of the glutarimide ring ubiquitous in these structures. We report that replacement of the traditional alkali base with a fluoride source enhances a previously challenging Suzuki-Miyaura coupling on glutarimide-containing compounds with trifluoroborates. These enabling conditions are reactive enough to generate these derivatives in high yields but mild enough to preserve both the glutarimide and its sensitive stereocenter. Experimental and computational data suggest a mechanistically distinct process of π-coordination of the trifluoroborate enabled by these conditions.
Collapse
Affiliation(s)
- William
F. Tracy
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Geraint H. M. Davies
- Small
Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts 02140, United States
| | - Lauren N. Grant
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Jacob M. Ganley
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Jesus Moreno
- Small
Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Emily C. Cherney
- Small
Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Kanaoka D, Yamada M, Yokoyama H, Nishino S, Kunimura N, Satoyoshi H, Wakabayashi S, Urabe K, Ishii T, Nakanishi M. FPFT-2216, a Novel Anti-lymphoma Compound, Induces Simultaneous Degradation of IKZF1/3 and CK1α to Activate p53 and Inhibit NFκB Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:312-327. [PMID: 38265263 PMCID: PMC10846380 DOI: 10.1158/2767-9764.crc-23-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.
Collapse
Affiliation(s)
- Daiki Kanaoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Mitsuo Yamada
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hironori Yokoyama
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Satoko Nishino
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Naoshi Kunimura
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Shota Wakabayashi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Kazunori Urabe
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Takafumi Ishii
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Masato Nakanishi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| |
Collapse
|
19
|
Dong N, Perez-Lamas L, Chavez JC. Emerging synthetic drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin Emerg Drugs 2023; 28:181-190. [PMID: 37649373 DOI: 10.1080/14728214.2023.2250722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma. Recent advances in immunotherapy such as chimeric antigen receptor T-cell therapy have significantly improved the outcomes in patients. Despite those advances, disease still recurs in many patients after multiple lines of therapy, and they eventually die. Many novel agents are under investigation. In this review, we focus on the synthetic drugs, usually small-molecule oral agents, that target a specific tumor-cell survival pathway. AREAS COVERED We discuss immunomodulatory drugs, cereblon E3 ligase modulators, Bruton tyrosine kinase degraders, B-cell lymphoma-2 inhibitors, Enhancer of Zeste 2 inhibitors, IRAK4 inhibitors/IRAK4 protein degraders, bromodomain and extraterminal inhibitors, cyclin-dependent kinase 9 inhibitors, and menin inhibitors. We focus on their mechanisms of action, activities in DLBCL, and, in some cases, toxicity. We also discuss the challenges in developing synthetic drugs in DLBCL. EXPERT OPINION Synthetic drugs hold great potential for treating DLBCL. Many phase 1/2 trials are ongoing. To maximize their clinical benefit, a better understanding of the biology of this heterogeneous group of diseases is needed, synergic combinations need to be identified, and the sequencing of therapies needs to be considered.
Collapse
Affiliation(s)
- Ning Dong
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, USA
| | | | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
20
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Zhang SH, Zeng N, Sun JX, Liu CQ, Xu JZ, Xu MY, An Y, Zhong XY, Ma SY, He HD, Xia QD, Hu J, Wang SG. Pan-cancer analysis reveals the prognostic and immunologic roles of cereblon and its significance for PROTAC design. Heliyon 2023; 9:e16644. [PMID: 37303568 PMCID: PMC10248115 DOI: 10.1016/j.heliyon.2023.e16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cereblon (CRBN) has emerged as a vital E3 ubiquitin ligase for Proteolysis-targeting chimera (PROTAC) design. However, few studies focus on the physiological mechanism of CRBN, and more studies are needed to explore the influence of CRBN on tumorigenesis. This pan-cancer analysis aims to explore the prognostic and immunologic roles of CRBN, and provide new insight for CRBN into cancer treatment and PROTAC design. Methods The TCGA database, TIMER 2.0 database, and TISIDB database were used to analyze the role of CRBN in pan-cancer. Multiple bioinformatic methods (ssGSEA, Kaplan-Meier, univariate cox regression, ESTIMATE, CIBERSORT) were applied to investigate the CRBN expression status, gene activity, prognostic values, and its correlation with immune scores, immune infiltration, immune-related functions, HALLMARKs functions, and response to immunotherapy in pan-cancer. Results In most cancer types, the expression and activity of CRBN in tumor groups were lower compared with normal groups. Upregulated CRBN expression may indicate a better prognosis for cancer patients. The Immune score, stromal score, and tumor purity varied greatly among different cancer types. GSEA analysis showed that high CRBN expression was correlated with the downregulation of tumor-promoting signaling pathways. The level of CRBN was associated with Tumor mutation burden (TMB), Microsatellite instability (MSI), objective response rate (ORR), and immune cell infiltration in a few cancer types. Conclusion Pan-cancer analysis reveals the potential role of CRBN as a prognostic biomarker and versatile immunologic roles in different cancer types. Upregulated expression of CRBN may be beneficial to CRBN-related immunotherapy and PROTAC design.
Collapse
|
22
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
23
|
Mok CC. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023; 83:479-496. [PMID: 36972009 PMCID: PMC10042116 DOI: 10.1007/s40265-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.
| |
Collapse
|