1
|
Kohoutova K, Dočekal V, Ausserlechner MJ, Kaiser N, Tekel A, Mandal R, Horvath M, Obsilova V, Vesely J, Hagenbuchner J, Obsil T. Lengthening the Guanidine-Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription. ACS OMEGA 2022; 7:34632-34646. [PMID: 36188303 PMCID: PMC9521028 DOI: 10.1021/acsomega.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.
Collapse
Affiliation(s)
- Klara Kohoutova
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | | | - Nora Kaiser
- Department
of Pediatrics I, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Andrej Tekel
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Raju Mandal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Matej Horvath
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Veronika Obsilova
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Jan Vesely
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Judith Hagenbuchner
- Department
of Pediatrics II, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|
2
|
Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of Plasmodium falciparum Late-Stage Development and Egress. Antimicrob Agents Chemother 2020; 64:AAC.01802-19. [PMID: 32071059 DOI: 10.1128/aac.01802-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.
Collapse
|
3
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
4
|
Bollenbach M, Salvat E, Daubeuf F, Wagner P, Yalcin I, Humo M, Letellier B, Becker LJ, Bihel F, Bourguignon JJ, Villa P, Obrecht A, Frossard N, Barrot M, Schmitt M. Phenylpyridine-2-ylguanidines and rigid mimetics as novel inhibitors of TNFα overproduction: Beneficial action in models of neuropathic pain and of acute lung inflammation. Eur J Med Chem 2018; 147:163-182. [PMID: 29432948 DOI: 10.1016/j.ejmech.2018.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1β) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.
Collapse
Affiliation(s)
- Maud Bollenbach
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Eric Salvat
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, 67000 Strasbourg, France
| | - François Daubeuf
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Patrick Wagner
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Ipek Yalcin
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Muris Humo
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Baptiste Letellier
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Léa J Becker
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Frédéric Bihel
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Jean-Jacques Bourguignon
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Pascal Villa
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Adeline Obrecht
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Nelly Frossard
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Michel Barrot
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Martine Schmitt
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France.
| |
Collapse
|
5
|
Tahir S, Badshah A, Hussain RA. Guanidines from ‘toxic substances’ to compounds with multiple biological applications – Detailed outlook on synthetic procedures employed for the synthesis of guanidines. Bioorg Chem 2015; 59:39-79. [DOI: 10.1016/j.bioorg.2015.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
|
6
|
Rauf MK, Imtiaz-ud-Din, Badshah A. Novel approaches to screening guanidine derivatives. Expert Opin Drug Discov 2013; 9:39-53. [PMID: 24261559 DOI: 10.1517/17460441.2013.857308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Compounds containing guanidine moiety, originating both from natural and synthetic sources, have found potential applications in both synthetic and medicinal chemistry. Indeed, guanidine functionality can be found in many natural and pharmaceutical products as well as in cosmetic ingredients produced by synthetic methods. AREAS COVERED This review covers the latest developments in the research undertaken for the therapeutic application of newly synthesized guanidine derivatives including: small peptides and peptidomimetics. This article encompasses the selected literature published in the last three decades with a focus on the novel approaches for screening of lead drug candidates with their pharmacological action. EXPERT OPINION Guanidines, as they are both organically based and also hydrophilic in nature, have undergone a mammoth amount of screening and testing to discover promising lead structures with a CN3 core, appropriate for potential future drug development. The compounds have the potential to be neurodegenerative therapeutic options, as well as: anti-inflammatory, anti-protozoal, anti-HIV, chemotherapeutic, anti-diabetic agents and so on. It is true that guanidine-based compounds of natural sources also, like synthetic and virtually designed drugs, have been of significant interest and have the potential to be useful therapeutic options in the future. As for now, however, there is not sufficient data to support their use in a number of the suggested areas, and further studies are required.
Collapse
|
7
|
Biagetti M, Leslie CP, Mazzali A, Seri C, Pizzi DA, Bentley J, Genski T, Di Fabio R, Zonzini L, Caberlotto L. Synthesis and structure-activity relationship of N-(3-azabicyclo[3.1.0]hex-6-ylmethyl)-5-(2-pyridinyl)-1,3-thiazol-2-amines derivatives as NPY Y5 antagonists. Bioorg Med Chem Lett 2010; 20:4741-4. [PMID: 20630754 DOI: 10.1016/j.bmcl.2010.06.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022]
Abstract
A novel class of small molecule NPY Y5 antagonists based around an azabicyclo[3.1.0]hexane scaffold was identified through modification of a screening hit. Structure-activity relationships and efforts undertaken to achieve a favourable pharmacokinetic profile in rat are described.
Collapse
Affiliation(s)
- Matteo Biagetti
- GlaxoSmithKline, Neurosciences Centre of Excellence for Drug Discovery, Medicines Research Centre, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
BACKGROUND The guanidine group defines chemical and physicochemical properties of many compounds of medical interest and guanidine-containing derivatives constitute a very important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. OBJECTIVE To review the most important pharmacological properties, mechanisms of action and therapeutic uses of simple guanidine derivatives, cyclic analogues of guanidines as well as peptides, peptidomimetics and peptoids incorporating arginine. METHODS The review presents both the recent patent literature and original papers dealing with guanidine derivatives that show interesting biological activity and emphasizes the newest developing drugs. CONCLUSION Recent achievements in the synthesis of guanidine-containing molecules with diverse chemical, biochemical and pharmacological properties make them of great importance to the design and development of novel drugs acting at CNS, anti-inflammatory agents, inhibitors of Na(+)/H(+) exchanger, inhibitors of NO synthase, antithrombotic, antidiabetic and chemotherapeutic agents as well as guanidinium-based transporters and vectors.
Collapse
Affiliation(s)
- Franciszek Saczewski
- Department of Chemical Technology of Drugs, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, Poland.
| | | |
Collapse
|
9
|
Sakamoto T, Moriya M, Haga Y, Takahashi T, Shibata T, Okamoto O, Nonoshita K, Kitazawa H, Hidaka M, Gomori A, Iwaasa H, Ishihara A, Kanatani A, Fukami T, Gao YD, Macneil DJ, Yang L. Identification of novel and orally active spiroindoline NPY Y5 receptor antagonists. Bioorg Med Chem Lett 2009; 19:1564-8. [PMID: 19243937 DOI: 10.1016/j.bmcl.2009.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/04/2009] [Accepted: 02/07/2009] [Indexed: 11/24/2022]
Abstract
A series of spiroindoline-3,4'-piperidine derivatives were synthesized and evaluated for their binding affinities and antagonistic activities at Y5 receptors. Potent Y5 antagonists were tested for their oral bioavailabilities and brain penetration in rats. Some of the antagonists showed good oral bioavailability and/or good brain penetration. In particular, compound 6e was orally bioavailable and brain penetrant, and oral administration of 6e inhibited bPP-induced food intake in rats with a minimum effective dose of 10mg/kg.
Collapse
Affiliation(s)
- Toshihiro Sakamoto
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sato N, Jitsuoka M, Shibata T, Hirohashi T, Nonoshita K, Moriya M, Haga Y, Sakuraba A, Ando M, Ohe T, Iwaasa H, Gomori A, Ishihara A, Kanatani A, Fukami T. (9S)-9-(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one, a selective and orally active neuropeptide Y Y5 receptor antagonist. J Med Chem 2008; 51:4765-70. [PMID: 18637668 DOI: 10.1021/jm8003587] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(9S)-9-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one ((S)-1) was identified as a selective and orally active neuropeptide Y Y5 receptor antagonist. The structure-activity relationship for this structural class was investigated and showed that limited substitution on the phenyl ring was tolerated and that modification of the 4,4-dimethyl group of the cyclohexenone and the 3,3-dimethyl group of the xanthenone parts slightly improved potency. The plasma concentration-time profile after oral administration of (S)-1 in Sprague-Dawley (SD) rats showed significant in vivo racemization of (S)-1 and that (S)-1 is cleared much more quickly than (R)-1. The duration of (S)-1 in SD rats after oral administration of (RS)-1 racemate was twice as long as that following oral administration of (S)-1. The C max values of (S)-1 after administration of (S)-1 and (RS)-1 were comparable, and the brain to plasma ratio for (S)-1 was 0.34 in SD rats. In our acute D-Trp (34)NPY-induced food intake model, both (S)-1 and (RS)-1 showed potent and dose-dependent efficacy. Therefore, the use of (RS)-1 is suitable for studies that require sustained plasma exposure of (S)-1.
Collapse
Affiliation(s)
- Nagaaki Sato
- Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co, Ltd, Okubo 3, Tsukuba 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
12
|
Takahashi T, Sakuraba A, Hirohashi T, Shibata T, Hirose M, Haga Y, Nonoshita K, Kanno T, Ito J, Iwaasa H, Kanatani A, Fukami T, Sato N. Novel potent neuropeptide Y Y5 receptor antagonists: Synthesis and structure–activity relationships of phenylpiperazine derivatives. Bioorg Med Chem 2006; 14:7501-11. [PMID: 16919461 DOI: 10.1016/j.bmc.2006.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/07/2006] [Indexed: 11/20/2022]
Abstract
A series of phenylpiperazine derivatives were synthesized and evaluated for their neuropeptide Y (NPY) Y5 receptor antagonistic activities. The benzindane portion of 2 was replaced by 1-phenylpiperazine, resulting in novel urea derivative 3f. Subsequent optimization of the phenylpiperazine template by substitution of the phenyl moiety resulted in a series of (2-methanesulfonamidephenyl)piperazine derivatives that showed potent binding affinity and antagonistic activity for the Y5 receptor.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|