1
|
Tamura T, Hamachi I. N-Acyl- N-alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems. Acc Chem Res 2025; 58:87-100. [PMID: 39661110 DOI: 10.1021/acs.accounts.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Selective chemical modification of endogenous proteins in living systems with synthetic small molecular probes is a central challenge in chemical biology. Such modification has a variety of applications important for biological and pharmaceutical research, including protein visualization, protein functionalization, proteome-wide profiling of enzyme activity, and irreversible inhibition of protein activity. Traditional chemistry for selective protein modification in cells largely relies on the high nucleophilicity of cysteine residues to ensure target-selectivity and site-specificity of modification. More recently, lysine residues, which are more abundant on protein surfaces, have attracted attention for the covalent modification of proteins. However, it has been difficult to efficiently modify the ε-amino groups of lysine side-chains, which are mostly (∼99.9%) protonated and thus exhibit low nucleophilicity at physiological pH. Our group revealed that N-acyl-N-alkyl sulfonamide (NASA) moieties can rapidly and efficiently acylate noncatalytic (i.e., less reactive) lysine residues in proteins by leveraging a reaction acceleration effect via proximity. The excellent reaction kinetics and selectivity for lysine of the NASA chemistry enable covalent modification of natural intracellular and cell-surface proteins, which is intractable using conventional chemistries. Moreover, recently developed N-acyl-N-aryl sulfonamide (ArNASA) scaffolds overcome some problems faced by the first-generation NASA compounds. In this Account, we summarize our recent works in the development of NASA/ArNASA chemistry and several applications reported by ourselves and other groups. First, we characterize the basic properties of NASA/ArNASA chemistry, including the labeling kinetics, amino acid preference, and biocompatibility, and compare this approach with other ligand-directed chemistries. This section also describes the principles of nucleophilic organocatalyst-mediated protein acylation, another important protein labeling strategy using the NASA reactive group, and its application to neurotransmitter receptor labeling in brain slices. Second, we highlight various recent examples of protein functionalization using NASA/ArNASA chemistry, such as visualization of membrane proteins including therapeutically important G-protein coupled receptors, gel-based ligand screening assays, photochemical control of protein activity, and targeted protein degradation. Third, we survey covalent inhibition of proteins by NASA/ArNASA-based lysine-targeting. The unprecedented reactivity of NASA/ArNASA toward lysine allows highly potent, irreversible inhibition of several drug targets for the treatment of cancer, including HSP90, HDM2-p53 protein-protein interaction, and a Bruton's tyrosine kinase mutant that has developed resistance to cysteine-targeted covalent-binding drugs. Finally, current limitations of, and future perspectives on, this research field are discussed. The new chemical labeling techniques offered by NASA/ArNASA chemistry and its derivatives create a valuable molecular toolbox for studying numerous biomolecules in living cells and even in vivo.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Ryan EM, Norinskiy MA, Bracken AK, Lueders EE, Chen X, Fu Q, Anderson ET, Zhang S, Abbasov ME. Activity-Based Acylome Profiling with N-(Cyanomethyl)- N-(phenylsulfonyl)amides for Targeted Lysine Acylation and Post-Translational Control of Protein Function in Cells. J Am Chem Soc 2024; 146:27622-27643. [PMID: 39348182 PMCID: PMC11899832 DOI: 10.1021/jacs.4c09073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lysine acylations are ubiquitous and structurally diverse post-translational modifications that vastly expand the functional heterogeneity of the human proteome. Hence, the targeted acylation of lysine residues has emerged as a strategic approach to exert biomimetic control over the protein function. However, existing strategies for targeted lysine acylation in cells often rely on genetic intervention, recruitment of endogenous acylation machinery, or nonspecific acylating agents and lack methods to quantify the magnitude of specific acylations on a global level. In this study, we develop activity-based acylome profiling (ABAP), a chemoproteomic strategy that exploits elaborate N-(cyanomethyl)-N-(phenylsulfonyl)amides and lysine-centric probes for site-specific introduction and proteome-wide mapping of posttranslational lysine acylations in human cells. Harnessing this framework, we quantify various artificial acylations and rediscover numerous endogenous lysine acylations. We validate site-specific acetylation of target lysines and establish a structure-activity relationship for N-(cyanomethyl)-N-(phenylsulfonyl)amides in proteins from diverse structural and functional classes. We identify paralog-selective chemical probes that acetylate conserved lysines within interferon-stimulated antiviral RNA-binding proteins, generating de novo proteoforms with obstructed RNA interactions. We further demonstrate that targeted acetylation of a key enzyme in retinoid metabolism engenders a proteoform with a conformational change in the protein structure, leading to a gain-of-function phenotype and reduced drug potency. These findings underscore the versatility of our strategy in biomimetic control over protein function through targeted delivery and global profiling of endogenous and artificial lysine acylations, potentially advancing therapeutic modalities and our understanding of biological processes orchestrated by these post-translational modifications.
Collapse
Affiliation(s)
- Elizabeth M Ryan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael A Norinskiy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xueer Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Mikail E Abbasov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Devel L, Malgorn C, Tohon RW, Launay M, Patiniotis K, Sejalon-Cipolla M, Beau F, Thai R, Bruyat P, Bonino A, Bregant S, Subra G, Cantel S, Georgiadis D. Covalent Labeling of Matrix Metalloproteases with Affinity-Based Probes Containing Tuned Reactive N-Acyl-N-Alkyl Sulfonamide Cleavable Linkers. Chembiochem 2024:e202400441. [PMID: 39352839 DOI: 10.1002/cbic.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Original covalent probes with an N-acyl-N-alkyl sulfonamide cleavable linker were developed to target a broad set of human Matrix Metalloproteases (MMPs). The electrophilicity of this cleavable linker was modulated to improve the selectivity of the probes as well as reduce their unspecific reactivity in complex biological matrices. We first demonstrated that targeting the S3 subsite of MMPs enables access to broad-spectrum affinity-based probes that exclusively react with the active version of these proteases. The probes were further assessed in proteomes of varying complexity, where human MMP-13 was artificially introduced at known concentration and the resulting labeled MMP was imaged by in-gel fluorescence imaging. We showed that the less reactive probe was still able to covalently modify MMP-13 while exhibiting reduced off-target unspecific reactivity. This study clearly demonstrated the importance of finely controlling the reactivity of the NASA warhead to improve the selectivity of covalent probes in complex biological systems.
Collapse
Affiliation(s)
- Laurent Devel
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Carole Malgorn
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Regis-William Tohon
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Marie Launay
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Konstantinos Patiniotis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | | | - Fabrice Beau
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Robert Thai
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Pierrick Bruyat
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Annabelle Bonino
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Sarah Bregant
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Gilles Subra
- IBMM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Sonia Cantel
- IBMM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| |
Collapse
|
4
|
Noki S, de la Torre BG, Albericio F. Safety-Catch Linkers for Solid-Phase Peptide Synthesis. Molecules 2024; 29:1429. [PMID: 38611709 PMCID: PMC11012524 DOI: 10.3390/molecules29071429] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.
Collapse
Affiliation(s)
- Sikabwe Noki
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials, and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Sang D, Dong B, Yu K, Tian J. Ferric Chloride-Mediated Transacylation of N-Acylsulfonamides. J Org Chem 2024; 89:2306-2319. [PMID: 38272854 DOI: 10.1021/acs.joc.3c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Transacylation of N-acylsulfonamides, which replaces the N-acyl group with a new one, is a challenging and underdeveloped fundamental transformation. Herein, a general method for transacylation of N-acylsulfonamides is presented. The transformation is enabled by coincident catalytic reactivities of FeCl3 for nonhydrolytic deacylation of N-acylsulfonamides and subsequent acylation of the resultant sulfonamides and can be conducted either stepwise or in a one-pot manner. GaCl3 and RuCl3·xH2O are similarly effective for the reaction. This method is mild, efficient, and operationally simple. A variety of functional groups such as halogeno, keto, nitro, cyano, ether, and ester are well tolerated, providing the transacylation products in good to excellent yields.
Collapse
Affiliation(s)
- Dayong Sang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Bingqian Dong
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Kangkang Yu
- College of Biotechnology, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Juan Tian
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization, Jingmen, Hubei 448000, P. R. China
| |
Collapse
|
6
|
Kawano M, Murakawa S, Higashiguchi K, Matsuda K, Tamura T, Hamachi I. Lysine-Reactive N-Acyl- N-aryl Sulfonamide Warheads: Improved Reaction Properties and Application in the Covalent Inhibition of an Ibrutinib-Resistant BTK Mutant. J Am Chem Soc 2023; 145:26202-26212. [PMID: 37987622 DOI: 10.1021/jacs.3c08740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The covalent inhibition of a target protein has gained widespread attention in the field of drug discovery. Most of the current covalent drugs utilize the high reactivity of cysteines toward modest electrophiles. However, there is a growing need for warheads that can target lysine residues to expand the range of covalently druggable proteins and to deal with emerging proteins with mutations resistant to cysteine-targeted covalent drugs. We have recently developed an N-acyl-N-alkyl sulfonamide (NASA) as a lysine-targeted electrophile. Despite its successful application, this NASA warhead suffered from instability in physiological environments, such as serum-containing medium, because of its high intrinsic reactivity. In this study, we sought to modify the structure of the NASA warhead and found that N-acyl-N-aryl sulfonamides (ArNASAs) are promising electrophiles for use in a lysine-targeted covalent inhibition strategy. We prepared a focused library of ArNASA derivatives with diverse structures and reactivity and identified several warhead candidates with suppressed hydrolysis-mediated inactivation and reduced nonspecific reactions with off-target proteins, without sacrificing the reactivity toward the target. These reaction properties enabled the improved covalent inhibition of intracellular heat shock protein 90 (HSP90) in the presence of serum and the development of the first irreversible inhibitor for ibrutinib-resistant Bruton's tyrosine kinase (BTK) bearing the C481S mutation. This study clearly demonstrated the use of a set of ArNASA warheads to create highly potent covalent drugs and highlighted the importance of enriching the current arsenal of lysine-reactive warheads.
Collapse
Affiliation(s)
- Masaharu Kawano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Syunsuke Murakawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
7
|
Sang D, Dong B, Liu Y, Tian J. Chemoselective Cleavage of Acylsulfonamides and Sulfonamides by Aluminum Halides. J Org Chem 2022; 87:3586-3595. [PMID: 35157468 DOI: 10.1021/acs.joc.1c03133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemoselective cleavage of C-N bonds of amides, sulfonamides, and acylsulfonamides by aluminum halides is described. AlCl3 and AlI3 display complementary reactivities toward N-alkyl and N-acyl moieties. N-Alkylacylsulfonamides, secondary N-(tert-butyl)sulfonamides, and tertiary N-(tert-butyl)amides undergo N-dealkylation upon treatments with AlI3 generated in situ from aluminum and iodine in acetonitrile. In contrast, AlCl3 preferentially cleaves N-acyl groups of tertiary and secondary sulfonamides.
Collapse
Affiliation(s)
- Dayong Sang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Bingqian Dong
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.,School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Yunfeng Liu
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| | - Juan Tian
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China
| |
Collapse
|
8
|
Nadeem‐ul‐Haque M, Bashir A, Karim H, Khan SN, Shah ZA, Jabeen A, Qayyum S, Ganesan A, Choudhary MI, Shaheen F. Synthesis of [1‐8‐NαC]‐zanriorb A1, alanine‐containing analogues, and their cytotoxic and anti‐inflammatory activity. J Pept Sci 2022; 28:e3405. [DOI: 10.1002/psc.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- M. Nadeem‐ul‐Haque
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Anila Bashir
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Humira Karim
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Sadiq Noor Khan
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Zafar Ali Shah
- Department of Chemistry University of Swabi Khyber Pakhtunkhwa Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Shaista Qayyum
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - A. Ganesan
- School of Pharmacy University of East Anglia Norwich United Kingdom
| | - M. Iqbal Choudhary
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Department of Biochemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Farzana Shaheen
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| |
Collapse
|
9
|
Wierzbicka M, Waliczek M, Dziadecka A, Stefanowicz P. One-Pot Cyclization and Cleavage of Peptides with N-Terminal Cysteine via the N,S-Acyl Shift of the N-2-[Thioethyl]glycine Residue. J Org Chem 2021; 86:12292-12299. [PMID: 34355572 PMCID: PMC8419835 DOI: 10.1021/acs.joc.1c01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
We developed
a one-pot method for peptide cleavage from
a solid support via the N,S-acyl
shift of N-2-[thioethyl]glycine and transthioesterification
using external thiols to produce cyclic peptides through native chemical
self-ligation with the N-terminal cysteine. The feasibility
of this methodology is validated by the syntheses of model short peptides,
including a tetrapeptide, the bicyclic sunflower trypsin inhibitor
SFTI-1, and rhesus Θ-defensin RTD-1. Synthesis of the whole
peptide precursor can be fully automated and proceeds without epimerization
or dimerization.
Collapse
Affiliation(s)
- Magdalena Wierzbicka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Anna Dziadecka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
10
|
Verzele D, Ruiz García Y, Madder A. Untapped Opportunities of Resin-to-Resin Transfer Reactions (RRTR) for the Convergent Assembly of Multivalent Peptide Conjugates. Chemistry 2020; 26:4701-4705. [PMID: 31997431 DOI: 10.1002/chem.202000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Indexed: 11/07/2022]
Abstract
Handling of the individual fragments remains a bottleneck in the convergent assembly of peptides. Overlooked since the emergence of ligation chemistries during the past two decades, so-called resin-to-resin transfer reactions (RRTR) are here described as a strategic shortcut in this context. Condensation of the involved moieties at an acceptor resin is facilitated by shuttling peptide segments directly from a donor resin in a one-pot fashion. The straightforward synthesis of a sterically constrained 13-mer peptidosteroid model illustrates the utility of this approach, presenting the first successful application of the RRTR methodology in the field of multivalent design and bioconjugation. Relying on established procedures to generate, monitor and isolate intermediates and products, the solid-phase nature of the entire strategy allows for the fast construction of polypeptide adducts and libraries thereof. As such, a rejuvenated use and new opportunities for RRTR are reported.
Collapse
Affiliation(s)
- Dieter Verzele
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Yara Ruiz García
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| |
Collapse
|
11
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
12
|
Sagar NR, Durgamma S, Srinivasulu C, Basavaprabhu H, Sureshbabu V. A Unified Approach to Access
N
‐Acyl Sulfonamide Tethered Peptide Conjugates. ChemistrySelect 2019. [DOI: 10.1002/slct.201901024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nagamangala Ramachandra Sagar
- Room No. 109Peptide Research LaboratoryDepartment of ChemistryCentral College CampusDr. B. R. Ambedkar VeedhiBangalore University Bangalore 560 001 India
| | - Suram Durgamma
- Room No. 109Peptide Research LaboratoryDepartment of ChemistryCentral College CampusDr. B. R. Ambedkar VeedhiBangalore University Bangalore 560 001 India
| | - Chinthaginjala Srinivasulu
- Room No. 109Peptide Research LaboratoryDepartment of ChemistryCentral College CampusDr. B. R. Ambedkar VeedhiBangalore University Bangalore 560 001 India
| | - Hosamani Basavaprabhu
- Room No. 109Peptide Research LaboratoryDepartment of ChemistryCentral College CampusDr. B. R. Ambedkar VeedhiBangalore University Bangalore 560 001 India
| | - Vommina Venkata Sureshbabu
- Room No. 109Peptide Research LaboratoryDepartment of ChemistryCentral College CampusDr. B. R. Ambedkar VeedhiBangalore University Bangalore 560 001 India
| |
Collapse
|
13
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Sofia MJ. The Discovery and Early Clinical Evaluation of the HCV NS3/4A Protease Inhibitor Asunaprevir (BMS-650032). TOPICS IN MEDICINAL CHEMISTRY 2019. [PMCID: PMC7123690 DOI: 10.1007/7355_2018_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The discovery of asunaprevir (1) began with the concept of engaging the small and well-defined S1’ pocket of the hepatitis C virus (HCV) NS3/4A protease that was explored in the context of tripeptide carboxylic acid-based inhibitors. A cyclopropyl-acyl sulfonamide moiety was found to be the optimal element at the P1-P1’ interface enhancing the potency of carboxylic acid-based prototypes by 10- to >100-fold, dependent upon the specific background. Optimization for oral bioavailability identified a 1-substituted isoquinoline-based P2* element that conferred a significant exposure advantage in rats compared to the matched 4-substituted quinoline isomer. BMS-605339 (30) was the first cyclopropyl-acyl sulfonamide derivative advanced into clinical trials that demonstrated dose-related reductions in plasma viral RNA in HCV-infected patients. However, 30 was associated with cardiac events observed in a normal healthy volunteer (NHV) and an HCV-infected patient that led to the suspension of the development program. Using a Langendorff rabbit heart model, a limited structure-cardiac liability relationship was quickly established that led to the discovery of 1. This compound, which differs from 30 only by changes in the substitution pattern of the P2* isoquinoline heterocycle and the addition of a single chlorine atom to the molecular formula, gave a dose-dependent reduction in plasma viral RNA following oral administration to HCV-infected patients without the burden of the cardiac events that had been observed with 30. A small clinical trial of the combination of 1 with the HCV NS5A inhibitor daclatasvir (2) established for the first time that a chronic genotype 1 (GT-1) HCV infection could be cured by therapy with two direct-acting antiviral agents in the absence of exogenous immune-stimulating agents. Development of the combination of 1 and 2 was initially focused on Japan where the patient population is predominantly infected with GT-1b virus, culminating in marketing approval which was granted on July 4, 2014. In order to broaden therapy to include GT-1a infections, a fixed dose triple combination of 1, 2, and the allosteric NS5B inhibitor beclabuvir (3) was developed, approved by the Japanese health authorities for the treatment of HCV GT-1 infection on December 20, 2016 and marketed as Ximency®.
Collapse
|
15
|
Saini G, Trenchevska O, Howell LJ, Boyd JG, Smith DP, Jain V, Linford MR. Performance Comparison of Three Chemical Vapor Deposited Aminosilanes in Peptide Synthesis: Effects of Silane on Peptide Stability and Purity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11925-11932. [PMID: 30208711 DOI: 10.1021/acs.langmuir.8b01298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silicon oxide substrates underwent gas-phase functionalization with various aminosilanes, and the resulting surfaces were evaluated for their suitability as a solid support for solid phase peptide synthesis (SPPS). APTES (3-aminopropyltriethoxysilane), APDEMS (3-aminopropyldiethoxymethylsilane), and APDIPES (3-aminopropyldiisopropylethoxysilane) were individually applied to thermal oxide-terminated silicon substrates via gas-phase deposition. Coated surfaces were characterized by spectroscopic ellipsometry (SE), contact angle goniometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and spectrophotometry. Model oligopeptides with 16 residues were synthesized on the amino surfaces, and the chemical stabilities of the resulting surfaces were evaluated against a stringent side chain deprotection (SCD) step, which contained trifluoroacetic acid (TFA) and trifluoromethanesulfonic acid (TFMSA). Functionalized surface thickness loss during SCD was most acute for APDIPES and the observed relative stability order was APTES > APDEMS > APDIPES. Amino surfaces were evaluated for compatibility with stepwise peptide synthesis where complete deprotection and coupling cycles are paramount. Model trimer syntheses indicated that routine capping of unreacted amines with acetic anhydride significantly increased purity as measured by MALDI-MS. An inverse correlation between the amine loading density and peptide purity was observed. In general, peptide purity was highest for the lowest amine density APDIPES surface.
Collapse
Affiliation(s)
- Gaurav Saini
- HealthTell Inc. , Chandler , Arizona 85226 , United States
| | | | - Loren J Howell
- HealthTell Inc. , Chandler , Arizona 85226 , United States
| | - James G Boyd
- HealthTell Inc. , Chandler , Arizona 85226 , United States
| | - David P Smith
- HealthTell Inc. , Chandler , Arizona 85226 , United States
| | - Varun Jain
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Matthew R Linford
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
16
|
Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nat Commun 2018; 9:1870. [PMID: 29760386 PMCID: PMC5951806 DOI: 10.1038/s41467-018-04343-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Selective modification of native proteins in live cells is one of the central challenges in recent chemical biology. As a unique bioorthogonal approach, ligand-directed chemistry recently emerged, but the slow kinetics limits its scope. Here we successfully overcome this obstacle using N-acyl-N-alkyl sulfonamide as a reactive group. Quantitative kinetic analyses reveal that ligand-directed N-acyl-N-alkyl sulfonamide chemistry allows for rapid modification of a lysine residue proximal to the ligand binding site of a target protein, with a rate constant of ~104 M−1 s−1, comparable to the fastest bioorthogonal chemistry. Despite some off-target reactions, this method can selectively label both intracellular and membrane-bound endogenous proteins. Moreover, the unique reactivity of N-acyl-N-alkyl sulfonamide enables the rational design of a lysine-targeted covalent inhibitor that shows durable suppression of the activity of Hsp90 in cancer cells. This work provides possibilities to extend the covalent inhibition approach that is currently being reassessed in drug discovery. Chemically modifying proteins is hard to achieve selectively without purifying the target protein. Here, the authors present a method to modify proteins on lysine residues in living cells quicker than via known approaches and show that it can be used to develop protein covalent inhibitors.
Collapse
|
17
|
Ohara T, Kaneda M, Saito T, Fujii N, Ohno H, Oishi S. Head-to-tail macrocyclization of cysteine-free peptides using an o -aminoanilide linker. Bioorg Med Chem Lett 2018; 28:1283-1286. [DOI: 10.1016/j.bmcl.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/28/2022]
|
18
|
Tamura T, Song Z, Amaike K, Lee S, Yin S, Kiyonaka S, Hamachi I. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems. J Am Chem Soc 2017; 139:14181-14191. [DOI: 10.1021/jacs.7b07339] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhining Song
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin Lee
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sifei Yin
- Magdalene College, University of Cambridge, Cambridge CB3 0AG, United Kingdom
| | - Shigeki Kiyonaka
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
19
|
Portal C, Hintersteiner M, Barbeau O, Dodd P, Huggett M, Pérez‐Pi I, Evans D, Auer M. Facile Synthesis of a Next Generation Safety-Catch Acid-Labile Linker, SCAL-2, Suitable for Solid-Phase Synthesis, On-Support Display and for Post-Synthesis Tagging. ChemistrySelect 2017; 2:6658-6662. [PMID: 29104911 PMCID: PMC5661701 DOI: 10.1002/slct.201701519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 11/27/2022]
Abstract
The SCAL linker, a safety catch linker, is amongst the most versatile linkers for solid phase synthesis. It was originally described in 1991 by Pátek and Lebl. Yet, its application has been hindered by the low yields of published synthetic routes. Over time, the exceptional versatility of this linker has been demonstrated in several applications of advanced solid phase synthesis of peptides and peptidomimetics. Recently, an updated synthesis of the original linker has also been presented at the 22nd American Peptide Symposium, comprising 10 steps. Herein, the design and synthesis of a next generation SCAL linker, SCAL-2, is reported. SCAL-2 features a simplified molecular architecture, which allows for a more efficient synthesis in 8 steps with superior yields. Both linkers, SCAL and SCAL-2 are compared in terms of their cleavage properties adding valuable information on how to best utilize the versatility of these linkers for solid phase synthesis.
Collapse
Affiliation(s)
- Christophe Portal
- Edinburgh BioQuarter9 Little France Road, EdinburghScotland EH16 4UXU.K.
| | - Martin Hintersteiner
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Olivier Barbeau
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Peter Dodd
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Margaret Huggett
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Irene Pérez‐Pi
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - David Evans
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| |
Collapse
|
20
|
Shaheen F, Jabeen A, Ashraf S, Nadeem-Ul-Haque M, Shah ZA, Ziaee MA, Dastagir N, Ganesan A. Total synthesis, structural, and biological evaluation of stylissatin A and related analogs. J Pept Sci 2017; 22:607-17. [PMID: 27526945 DOI: 10.1002/psc.2909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022]
Abstract
The natural product cyclic peptide stylissatin A (1a) was reported to inhibit nitric oxide production in LPS-stimulated murine macrophage RAW 264.7 cells. In the current study, solid-phase total synthesis of stylissatin A was performed by using a safety-catch linker and yielded the peptide with a trans-Phe(7) -Pro(6) linkage, whereas the natural product is the cis rotamer at this position as evidenced by a marked difference in NMR chemical shifts. In order to preclude the possibility of 1b being an epimer of the natural product, we repeated the synthesis using d-allo-Ile in place of l-Ile and a different site for macrocyclization. The resulting product (d-allo-Ile(2) )-stylissatin A (1c) was also found to have the trans-Phe(7) -Pro(6) peptide conformations like rotamer 1b. Applying the second route to the synthesis of stylissatin A itself, we obtained stylissatin A natural rotamer 1a accompanied by rotamer 1b as the major product. Rotamers 1a, 1b, and the epimer 1c were separable by HPLC, and 1a was found to match the natural product in structure and biological activity. Six related analogs 2-7 of stylissatin A were synthesized on Wang resin and characterized by spectral analysis. The natural product (1a), the rotamer (1b), and (d-allo-Ile(2) )-stylissatin A (1c) exhibited significant inhibition of NO(.) . Further investigations were focused on 1b, which also inhibited proliferation of T-cells and inflammatory cytokine IL-2 production. The analogs 2-7 weakly inhibited NO(.) production, but strongly inhibited IL-2 cytokine production compared with synthetic peptide 1b. All analogs inhibited the proliferation of T-cells, with analog 7 having the strongest effect. In the analogs, the Pro(6) residue was replaced by Glu/Ala, and the SAR indicates that the nature of this residue plays a role in the biological function of these peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Farzana Shaheen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Samreen Ashraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Nadeem-Ul-Haque
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zafar Ali Shah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Asad Ziaee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nida Dastagir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
21
|
Ulrich V, Cryle MJ. SNaPe: a versatile method to generate multiplexed protein fusions using synthetic linker peptides for in vitro applications. J Pept Sci 2016; 23:16-27. [PMID: 27910178 DOI: 10.1002/psc.2943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022]
Abstract
Understanding the structure and function of protein complexes and multi-domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon Sortase-mediated and Native chemical ligation using synthetic Peptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps - sortase-mediated and native chemical ligation - together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Veronika Ulrich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
22
|
Harris PWR, Brimble MA. A comparison of Boc and Fmoc SPPS strategies for the preparation of C-terminal peptide α-thiolesters: NY-ESO-1 ³⁹Cys-⁶⁸Ala-COSR. Biopolymers 2016; 100:356-65. [PMID: 23444272 DOI: 10.1002/bip.22223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
The synthesis of a polypeptide derived from the cancer testis antigen NY-ESO-1 bearing a C-terminal α-thiolester is described. Employing tert-butyloxycarbonyl solid phase peptide synthesis the thiolester moiety was installed on-resin using a mercaptopropionic acid linker, thereby requiring no post synthetic manipulations and delivering the requisite α-thiolester polypeptide after cleavage from the resin with HF. Several 9-fluorenylmethyloxycarbonyl solid phase peptide synthesis approaches whereby the thiolester was required to be introduced in a post synthesis manner were examined concurrently. These comprised syntheses on two different "safety catch" linkers, an N-alkyl-N-acyl sulphonamide and an N-acyl benzimidazolone wherein the thiolester is generated from an activated precursor. The condensation of a mercaptan with the C-terminal carboxylate in a direct thiolesterification reaction was also examined. When using either of the three 9-fluorenylmethyloxycarbonyl-based approaches, the linear polypeptide could be assembled straightforwardly on the solid phase resin; however, a thiolesterification of the C-terminal carboxyl of the fully side chain protected peptide proved to be the most effective post-assembly method for the installation of the C-terminal thiolester.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand; Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019,, Auckland, 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand
| | | |
Collapse
|
23
|
Okamoto R, Isoe M, Izumi M, Kajihara Y. An efficient solid-phase synthesis of peptidyl-N-acetylguanidines for use in native chemical ligation. J Pept Sci 2016; 22:343-51. [DOI: 10.1002/psc.2872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Ryo Okamoto
- Graduate School of Science, Department of Chemistry; Osaka University; 1-1, Machikaneyama Toyonaka Osaka Japan
| | - Madoka Isoe
- Graduate School of Science, Department of Chemistry; Osaka University; 1-1, Machikaneyama Toyonaka Osaka Japan
| | - Masayuki Izumi
- Graduate School of Science, Department of Chemistry; Osaka University; 1-1, Machikaneyama Toyonaka Osaka Japan
| | - Yasuhiro Kajihara
- Graduate School of Science, Department of Chemistry; Osaka University; 1-1, Machikaneyama Toyonaka Osaka Japan
| |
Collapse
|
24
|
Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 2016; 22:4-27. [PMID: 26785684 PMCID: PMC4745034 DOI: 10.1002/psc.2836] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022]
Abstract
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications.
Collapse
Affiliation(s)
- Raymond Behrendt
- Novabiochem, Merck & CieIm Laternenacker 58200SchaffhausenSwitzerland
| | - Peter White
- Novabiochem, Merck Chemicals LtdPadge RoadBeestonNG9 2JRUK
| | - John Offer
- The Francis Crick Institute215 Euston RoadLondonNW1 2BEUK
| |
Collapse
|
25
|
Ghasemi MH, Kowsari E, Hosseini SK. Catalytic activity of magnetic Fe3O4@Diatomite earth and acetic acid for the N-acylation of sulfonamides. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Solid-phase synthesis of benzazoles, quinazolines, and quinazolinones using an alkoxyamine linker. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zohrabi-Kalantari V, Wilde F, Grünert R, Bednarski PJ, Link A. 4-Aminocyclopentane-1,3-diols as platforms for diversity: synthesis of a screening library. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00252g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|
29
|
Gazvoda M, Kočevar M, Polanc S. In Situ Formation of Vilsmeier Reagents Mediated by Oxalyl Chloride: a Tool for the Selective Synthesis ofN-Sulfonylformamidines. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Shelton PT, Jensen KJ. Synthesis of C-terminal peptide thioesters using Fmoc-based solid-phase peptide chemistry. Methods Mol Biol 2013; 1047:119-129. [PMID: 23943482 DOI: 10.1007/978-1-62703-544-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This chapter provides two protocols for the solid-phase synthesis of peptide thioesters using N (α) -Fmoc-protected amino acids. The first protocol is based on a so-called safety-catch linker, while the second relies on a backbone amide linker.
Collapse
|
31
|
Shaheen F, Rizvi TS, Musharraf SG, Ganesan A, Xiao K, Townsend JB, Lam KS, Choudhary MI. Solid-phase total synthesis of cherimolacyclopeptide E and discovery of more potent analogues by alanine screening. JOURNAL OF NATURAL PRODUCTS 2012; 75:1882-1887. [PMID: 23148652 DOI: 10.1021/np300266e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cherimolacyclopeptide E (1) is a cyclic hexapeptide obtained from Annona cherimola, reported to be cytotoxic against the KB (human nasopharyngeal carcinoma) cell line. The solid-phase total syntheses of this cyclic peptide and its analogues were accomplished by employing FMOC/tert-butyl-protected amino acids and the Kenner sulfonamide safety-catch linker. The synthetic peptide 1 was found to be weakly cytotoxic against four cell lines (MOLT-4, Jurkat T lymphoma, MDA-MB-231, and KB). Analogues 3 and 7, where glycine at positions 2 and 6 of the parent compound was replaced by Ala, exhibited enhanced cytotoxicity against KB (3, IC50 6.3 μM; 7, IC50 7.8 μM) and MDA-MB-231 breast cancer cells (3, IC50 10.2 μM; 7, IC50 7.7 μM), thereby suggesting possible selective targeting of these cancer cells by these peptides. The spectral data of synthetic peptide 1 was found to be similar to that reported for the natural product. However, a striking difference in biological activity was noted, which warrants the re-evaluation of the original natural product for purity and the existence of conformational differences.
Collapse
Affiliation(s)
- Farzana Shaheen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi , Karachi-75270, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Taylor JE, Jones MD, Williams JMJ, Bull SD. N-Acyl DBN Tetraphenylborate Salts as N-Acylating Agents. J Org Chem 2012; 77:2808-18. [DOI: 10.1021/jo202647f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James E. Taylor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew D. Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | - Steven D. Bull
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
33
|
Conibear AC, Craik DJ. Chemical Synthesis of Naturally-Occurring Cyclic Mini-Proteins from Plants and Animals. Isr J Chem 2011. [DOI: 10.1002/ijch.201100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Li SF, Huang WQ, Yang XL, Ye JZ. Preparation of Polystyrene-supported N-phenyl-N-acyl Sulfonamide Resin and its Application in Solution-phase Synthesis of Amides. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2011. [DOI: 10.1080/10601325.2011.596048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Abstract
Cyclotides are head-to-tail cyclic peptides that contain a cystine knot motif built from six conserved cysteine residues. They occur in plants of the Rubiaceae, Violaceae, Cucurbitaceae, and Fabaceae families and, aside from their natural role in host defense, have a range of interesting pharmaceutical activities, including anti-HIV activity. The variation seen in sequences of their six backbone loops has resulted in cyclotides being described as a natural combinatorial template. Their exceptional stability and resistance to enzymatic degradation has led to their use as scaffolds for peptide-based drug design. To underpin such applications, methods for the chemical synthesis of cyclotides have been developed and are described here. Cyclization using thioester chemistry has been instrumental in the synthesis of cyclotides for structure-activity studies. This approach involves a native chemical ligation reaction between an N-terminal Cys and a C-terminal thioester in the linear cyclotide precursor. Since cyclotides contain six Cys residues their syntheses can be designed around any of six linear precursors, thus providing flexibility in synthesis. The ease with which cyclotides fold, despite their topologically complex knot motif, as well as the ability to introduce combinatorial variation in the loops, makes cyclotides a promising drug-design scaffold.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia.
| | | |
Collapse
|
36
|
Fang WJ, Yakovleva T, Aldrich JV. A convenient approach to synthesizing peptide C-terminal N-alkyl amides. Biopolymers 2011; 96:715-22. [PMID: 22252422 PMCID: PMC3924563 DOI: 10.1002/bip.21600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 11/10/2022]
Abstract
Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the peptide amide linker-polyethylene glycol-polystyrene (PAL-PEG-PS) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides.
Collapse
Affiliation(s)
| | - Tatyana Yakovleva
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
37
|
Mende F, Seitz O. 9-Fluorenylmethyloxycarbonyl-basierte Festphasensynthese von α-Peptidthioestern. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201005180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Mende F, Seitz O. 9-Fluorenylmethoxycarbonyl-Based Solid-Phase Synthesis of Peptide α-Thioesters. Angew Chem Int Ed Engl 2010; 50:1232-40. [DOI: 10.1002/anie.201005180] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Indexed: 01/26/2023]
|
39
|
Abstract
Sulfonamides are well known motifs in medicinal chemistry, forming a large family of antibacterial agents as well as being found in numerous other drugs. The chemistry of this functional group, however, is less well documented. This review seeks to bring together the various applications and advantages of this motif in organic synthesis, which includes the sulfonamide as an activating group, protecting group, leaving group and as a molecular scaffold.
Collapse
Affiliation(s)
- Jonathan D. Wilden
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
40
|
Mhidia R, Bézière N, Blanpain A, Pommery N, Melnyk O. Assembly/Disassembly of Drug Conjugates Using Imide Ligation. Org Lett 2010; 12:3982-5. [DOI: 10.1021/ol101049g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Reda Mhidia
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Nicolas Bézière
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Annick Blanpain
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Nicole Pommery
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Oleg Melnyk
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| |
Collapse
|
41
|
Triola G, Gerauer M, Görmer K, Brunsveld L, Waldmann H. Solid-Phase Synthesis of Lipidated Ras Peptides Employing the Ellman Sulfonamide Linker. Chemistry 2010; 16:9585-91. [DOI: 10.1002/chem.201001642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
|
43
|
Zohrabi-Kalantari V, Heidler P, Kaiser M, Brun R, Kamper C, Link A. Inhibitors of adenosine consuming parasites through polymer-assisted N-acylation of N6-substituted 5′-amino-5′-deoxyadenosines. Mol Divers 2009; 14:307-20. [DOI: 10.1007/s11030-009-9176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022]
|
44
|
Inhibitors of adenosine consuming parasites through polymer-assisted solution phase synthesis of lipophilic 5′-amido-5′-deoxyadenosine derivatives. Bioorg Med Chem 2009; 17:1428-36. [DOI: 10.1016/j.bmc.2009.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 11/19/2022]
|
45
|
Giessmann D, Heidler P, Haemers T, Van Calenbergh S, Reichenberg A, Jomaa H, Weidemeyer C, Sanderbrand S, Wiesner J, Link A. Towards new antimalarial drugs: synthesis of non-hydrolyzable phosphate mimics as feed for a predictive QSAR study on 1-deoxy-D-xylulose-5-phosphate reductoisomerase inhibitors. Chem Biodivers 2008; 5:643-56. [PMID: 18421757 DOI: 10.1002/cbdv.200890060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) to 2-C-methyl-D-erythritol-4-phosphate (MEP) is effectively blocked by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitors such as the natural antibiotic fosmidomycin. Prediction of binding affinities for closely related Dxr ligands as well as estimation of the affinities of structurally more distinct inhibitors within this class of non-hydrolyzable phosphate mimics relies on the synthesis of fosmidomycin derivatives with a broad range of target affinity. Maintaining the phosphonic acid moiety, linear modifications of the lead structure were carried out in an effort to expand the SAR of this physicochemically challenging class of compounds. Synthetic access to a set of phosphonic acids with inhibitory activity (IC(50)) in the range from 1 to >30 microM vs. E. coli Dxr and 0.4 to 20 microM against P. falciparum Dxr is reported.
Collapse
Affiliation(s)
- Dirk Giessmann
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Strasse 17, D-17487 Greifswald
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thongyoo P, Roqué-Rosell N, Leatherbarrow RJ, Tate EW. Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org Biomol Chem 2008; 6:1462-70. [PMID: 18385853 DOI: 10.1039/b801667d] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The naturally-occurring cyclic cystine-knot microprotein trypsin inhibitors MCoTI-I and MCoTI-II have been synthesised using both thia-zip native chemical ligation and a biomimetic strategy featuring chemoenzymatic cyclisation by an immobilised protease. Engineered analogues have been produced containing a range of substitutions at the P1 position that redirect specificity towards alternative protease targets whilst retaining excellent to moderate affinity. Furthermore, we report an MCoTI analogue that is a selective low-microM inhibitor of foot-and-mouth-disease virus (FMDV) 3C protease, the first reported peptide-based inhibitor of this important viral enzyme.
Collapse
Affiliation(s)
- Panumart Thongyoo
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ
| | | | | | | |
Collapse
|
47
|
Davies SG, Mortimer DAB, Mulvaney AW, Russell AJ, Skarphedinsson H, Smith AD, Vickers RJ. An oxidatively-activated safety catch linker for solid phase synthesis. Org Biomol Chem 2008; 6:1625-34. [PMID: 18421396 DOI: 10.1039/b802204f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Stephen G Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
A new and efficient method for the facile synthesis of N-acyl sulfonamides under Lewis acid catalysis. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Merkx R, van Haren MJ, Rijkers DTS, Liskamp RMJ. Resin-Bound Sulfonyl Azides: Efficient Loading and Activation Strategy for the Preparation of the N-Acyl Sulfonamide Linker. J Org Chem 2007; 72:4574-7. [PMID: 17497928 DOI: 10.1021/jo0704513] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes an optimized protocol for the efficient loading of resin-bound aminoethane sulfonyl azides by either Boc- or Fmoc-protected amino thioacids. The resulting N-acyl sulfonamide is a convenient linker for use in Boc- or Fmoc-based solid-phase peptide synthesis. Activation of the N-acyl sulfonamide via a microwave-assisted alkylation procedure and subsequent treatment with functionalized nucleophiles yields C-terminally modified peptides that can be applied in chemoselective (bio)conjugation or ligation reactions.
Collapse
Affiliation(s)
- Remco Merkx
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
50
|
Seeberger S, Griffin RJ, Hardcastle IR, Golding BT. A new strategy for the synthesis of taurine derivatives using the ‘safety-catch’ principle for the protection of sulfonic acids. Org Biomol Chem 2007; 5:132-8. [PMID: 17164917 DOI: 10.1039/b614333d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The safety-catch principle has been applied for the development of a new method for protecting sulfonic acids. 2,2-Dimethylsuccinic acid was reduced to 2,2-dimethylbutane-1,4-diol, which was selectively silylated to give 4-(tert-butyldiphenylsilanyloxy)-2,2-dimethylbutan-1-ol. Reaction of the latter compound with 2-chloroethanesulfonyl chloride in the presence of triethylamine afforded 4-(tert-butyldiphenylsilyloxy)-2,2-dimethylbutyl ethenesulfonate directly. The ethenesulfonate underwent Michael-type addition with secondary amines to give protected derivatives of taurine (2-aminoethanesulfonic acid). Deprotection was achieved on treatment with tetrabutylammonium fluoride, whereby cleavage of the silicon-oxygen bond led to an intermediate alkoxide that immediately cyclised to 2,2-dimethyltetrahydrofuran with liberation of a sulfonate. Pure sulfonic acids were obtained from the crude product by ion exchange chromatography on a strongly basic resin, which was eluted with aqueous acetic acid. The method developed should be generally applicable to the protection of sulfonic acids and is amenable to a multiparallel format.
Collapse
Affiliation(s)
- Sonja Seeberger
- Northern Institute for Cancer Research, School of Natural Sciences-Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|