1
|
Chen J, Bai Y, Huang Y, Cui M, Wang Y, Gu Z, Wu X, Li Y, Rong YS. The Ptch/SPOUT1 methyltransferase deposits an m 3U modification on 28 S rRNA for normal ribosomal function in flies and humans. SCIENCE ADVANCES 2024; 10:eadr1743. [PMID: 39671501 PMCID: PMC11641110 DOI: 10.1126/sciadv.adr1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
The ribosomal RNA (rRNA) is one of the most heavily modified RNA species in nature. Although we have advanced knowledge of the sites, functions, and the enzymology of many of the rRNA modifications from all kingdoms of life, we lack basic understanding of many of those that are not universally present. A single N3 modified uridine base (m3U) was identified to be present on the 28S rRNA from humans and frogs but absent in bacteria or yeast. Here, we show that the equivalent m3U is present in Drosophila and that the Ptch/CG12128 enzyme and its human homolog SPOUT1 are both necessary and sufficient for carrying out the modification. The Ptch-modified U is at a functional center of the large ribosomal subunit, and, consistently, ptch-mutant cells suffer loss of ribosomal functions. SPOUT1, suggested to be the most druggable RNA methyltransferases in humans, represents a unique target where ribosomal functions could be specifically compromised in cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yaofu Bai
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yuantai Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Cui
- School of Public Health, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yiqing Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Zhenqi Gu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Xiaolong Wu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yubin Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yikang S. Rong
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| |
Collapse
|
2
|
Das PK, Adil O, DeGregorio AP, Sumita M, Shamsi MH. Pseudouridine-modified RNA probe for label-free electrochemical detection of nucleic acids on 2D MoS 2 nanosheets. Analyst 2024; 149:1310-1317. [PMID: 38247383 DOI: 10.1039/d3an01832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
RNA modification, particularly pseudouridine (Ψ), has played an important role in the development of the mRNA-based COVID-19 vaccine. This is because Ψ enhances RNA stability against nuclease activity and decreases the anti-RNA immune response. Ψ also provides structural flexibility to RNA by enhancing base stacking compared with canonical nucleobases. In this report, we demonstrate the first application of pseudouridine-modified RNA as a probe (Ψ-RNA) for label-free nucleic acid biosensing. It is known that MoS2 has a differential affinity for nucleic acids, which may be translated into a unique electronic signal. Herein, the Ψ-RNA probe interacts with the pristine MoS2 surface and causes a change in interfacial electrochemical charge transfer in the MoS2 nanosheets. Compared with an unmodified RNA probe, Ψ-RNA exhibited faster adsorption and higher affinity for MoS2. Moreover, Ψ-RNA could bind to complementary RNA and DNA targets with almost equal affinity when engaged with the MoS2 surface. Ψ-RNA maintained robust interactions with the MoS2 surface following the hybridization event, perhaps through its extra amino group. The detection sensitivity of the Ψ-RNA/MoS2 platform was as low as 500 attomoles, while the results also indicate that the probe can distinguish between complementary targets, single mismatches, and non-complementary nucleic acid sequences with statistical significance. This proof-of-concept study shows that the Ψ-RNA probe may solve numerous problems of adsorption-based biosensing platforms due to its stability and structural flexibility.
Collapse
Affiliation(s)
- Prabhangshu Kumer Das
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Anthony P DeGregorio
- Department of Chemistry, Southern Illinois University Edwardsville, IL, 62026, USA
| | - Minako Sumita
- Department of Chemistry, Southern Illinois University Edwardsville, IL, 62026, USA
| | - Mohtashim Hassan Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
3
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Data-informed reparameterization of modified RNA and the effect of explicit water models: application to pseudouridine and derivatives. J Comput Aided Mol Des 2022; 36:205-224. [PMID: 35338419 PMCID: PMC8956458 DOI: 10.1007/s10822-022-00447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Pseudouridine is one of the most abundant post-transcriptional modifications in RNA. We have previously shown that the FF99-derived parameters for pseudouridine and some of its naturally occurring derivatives in the AMBER distribution either alone or in combination with the revised γ torsion parameters (parmbsc0) failed to reproduce their conformational characteristics observed experimentally (Deb et al. in J Chem Inf Model 54:1129–1142, 2014; Deb et al. in J Comput Chem 37:1576–1588, 2016; Dutta et al. in J Chem Inf Model 60:4995–5002, 2020). However, the application of the recommended bsc0 correction did lead to an improvement in the description not only of the distribution in the γ torsional space but also of the sugar pucker distributions. In an earlier study, we examined the transferability of the revised glycosidic torsion parameters (χIDRP) for Ψ to its derivatives. We noticed that although these parameters in combination with the AMBER FF99-derived parameters and the revised γ torsional parameters resulted in conformational properties of these residues that were in better agreement with experimental observations, the sugar pucker distributions were still not reproduced accurately. Here we report a new set of partial atomic charges for pseudouridine, 1-methylpseudouridine, 3-methylpseudouridine and 2′-O-methylpseudouridine and a new set of glycosidic torsional parameters (χND) based on chosen glycosidic torsional profiles that most closely corresponded to the NMR data for conformational propensities and studied their effect on the conformational distributions using REMD simulations at the individual nucleoside level. We have also studied the effect of the choice of water model on the conformational characteristics of these modified nucleosides. Our observations suggest that the current revised set of parameters and partial atomic charges describe the sugar pucker distributions for these residues more accurately and that the choice of a suitable water model is important for the accurate description of their conformational properties. We have further validated the revised sets of parameters by studying the effect of substitution of uridine with pseudouridine within single stranded RNA oligonucleotides on their conformational and hydration characteristics.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India.
| |
Collapse
|
4
|
Wang Y, Jiang S, Chang M, Dong C. The solid-state and solution conformations of 2'-deoxy-2'-fluoro-4'-substituted nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:212-221. [PMID: 33336618 DOI: 10.1080/15257770.2020.1861288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The conformational features of drugs are important with respect to their biological activity. In this report, we confirmed the solid-state conformation of 1-(4'-azido-2'-deoxy-2'-fluoro-β-d-arabinofuranosyl) cytosine using single-crystal X-ray crystallography and the conformations of three 2'-deoxy-2'-fluoro-4'-substituted nucleosides in solution using Altona-Haasnoot's equations and Nuclear Overhauser effect spectroscopy (NOESY). Furthermore, we compared the preferred solid-state and solution conformation of these nucleosides with thermodynamics cycles to obtain more evidence of their conformations. The results showed 1-(4'-azido-2'-deoxy-2'-fluoro-β-d-arabinofuranosyl) cytosine was south type conformation (C-3'-exo) in solid-state and three 4'-substituted nucleosides were north type conformations (C-3'-endo) in solution. The north type conformations in solution indicated these compounds were steady to acidic and enzymatic N-glycolysis.
Collapse
Affiliation(s)
- Yanli Wang
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, China.,Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, China.,National Health Commission Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Shiqing Jiang
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingxiu Chang
- Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, China.,National Health Commission Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Chunhong Dong
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Angelbello AJ, Benhamou RI, Rzuczek SG, Choudhary S, Tang Z, Chen JL, Roy M, Wang KW, Yildirim I, Jun AS, Thornton CA, Disney MD. A Small Molecule that Binds an RNA Repeat Expansion Stimulates Its Decay via the Exosome Complex. Cell Chem Biol 2020; 28:34-45.e6. [PMID: 33157036 DOI: 10.1016/j.chembiol.2020.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Many diseases are caused by toxic RNA repeats. Herein, we designed a lead small molecule that binds the structure of the r(CUG) repeat expansion [r(CUG)exp] that causes myotonic dystrophy type 1 (DM1) and Fuchs endothelial corneal dystrophy (FECD) and rescues disease biology in patient-derived cells and in vivo. Interestingly, the compound's downstream effects are different in the two diseases, owing to the location of the repeat expansion. In DM1, r(CUG)exp is harbored in the 3' untranslated region, and the compound has no effect on the mRNA's abundance. In FECD, however, r(CUG)exp is located in an intron, and the small molecule facilitates excision of the intron, which is then degraded by the RNA exosome complex. Thus, structure-specific, RNA-targeting small molecules can act disease specifically to affect biology, either by disabling the gain-of-function mechanism (DM1) or by stimulating quality control pathways to rid a disease-affected cell of a toxic RNA (FECD).
Collapse
Affiliation(s)
- Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Raphael I Benhamou
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Suzanne G Rzuczek
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Zhenzhi Tang
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Jonathan L Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Madhuparna Roy
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Kye Won Wang
- Department of Chemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Charles A Thornton
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
6
|
Dutta N, Sarzynska J, Lahiri A. Molecular Dynamics Simulation of the Conformational Preferences of Pseudouridine Derivatives: Improving the Distribution in the Glycosidic Torsion Space. J Chem Inf Model 2020; 60:4995-5002. [PMID: 33030900 DOI: 10.1021/acs.jcim.0c00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are only four derivatives of pseudouridine (Ψ) that are known to occur naturally in RNA as post-transcriptional modifications. We have studied the conformational consequences of pseudouridylation and further modifications using replica exchange molecular dynamics simulations at the nucleoside level, and the simulated conformational preferences were compared with the available experimental (NMR) data. We found that the existing AMBER FF99-derived parameters for these nucleosides did not reproduce the observed experimental features and while the recommended bsc0 correction could be combined with these parameters leading to an improvement in the description of sugar pucker distributions, the χOL3 correction could not be applied to these nucleosides as such because of base isomerization. On the other hand, the revised χ torsion parameters (χIDRP) for Ψ developed earlier by us (Deb, I., J. Comput. Chem., 2016, 37, 1576-1588) in combination with the AMBER provided parameters and the revised γ torsion parameters generated conformational distributions, which generally were in better agreement with the experimental data. A significant shift of the distribution of base orientation toward the syn conformation was observed with our revised parameter sets compared to the large excess of anti conformation predicted by the FF99 parameters. Overall, our observations indicated that our revised set of parameters (χIDRP) for Ψ were also able to generate conformational distributions for all of the derivatives of Ψ in better agreement with the experimental data.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
7
|
Xu Y, Vanommeslaeghe K, Aleksandrov A, MacKerell AD, Nilsson L. Additive CHARMM force field for naturally occurring modified ribonucleotides. J Comput Chem 2016; 37:896-912. [PMID: 26841080 PMCID: PMC4801715 DOI: 10.1002/jcc.24307] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Abstract
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, B-1090, Belgium
| | - Alexey Aleksandrov
- Department of Biology, Ecole Polytechnique, Laboratoire De Biochimie (CNRS UMR7654), Palaiseau, F-91128, France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| |
Collapse
|
8
|
Yildirim I, Stern HA, Kennedy SD, Tubbs JD, Turner DH. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine. J Chem Theory Comput 2010; 6:1520-1531. [PMID: 20463845 PMCID: PMC2867398 DOI: 10.1021/ct900604a] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Indexed: 11/29/2022]
Abstract
A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.
Collapse
Affiliation(s)
- Ilyas Yildirim
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627, and Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | | | | | | | | |
Collapse
|
9
|
Mahto SK, Chow CS. Synthesis and solution conformation studies of the modified nucleoside N(4),2'-O-dimethylcytidine (m(4)Cm) and its analogues. Bioorg Med Chem 2008; 16:8795-800. [PMID: 18805697 DOI: 10.1016/j.bmc.2008.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/29/2008] [Accepted: 09/05/2008] [Indexed: 11/24/2022]
Abstract
The dimethylated ribosomal nucleoside m(4)Cm and its monomethylated analogues Cm and m(4)C were synthesized. The conformations (syn vs anti) of the three modified nucleosides and cytidine were determined by CD and 1D NOE difference spectroscopy. The ribose sugar puckers were determined by the use of proton coupling constants. The position of modification (e.g., O vs N methylation) was found to have an effect on the sugar pucker of cytidine.
Collapse
Affiliation(s)
- Santosh K Mahto
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
10
|
Puffer B, Moroder H, Aigner M, Micura R. 2'-Methylseleno-modified oligoribonucleotides for X-ray crystallography synthesized by the ACE RNA solid-phase approach. Nucleic Acids Res 2008; 36:970-83. [PMID: 18096613 PMCID: PMC2241898 DOI: 10.1093/nar/gkm880] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 11/15/2022] Open
Abstract
Site-specifically modified 2'-methylseleno RNA represents a valuable derivative for phasing of X-ray crystallographic data. Several successful applications in three-dimensional structure determination of nucleic acids, such as the Diels-Alder ribozyme, have relied on this modification. Here, we introduce synthetic routes to 2'-methylseleno phosphoramidite building blocks of all four standard nucleosides, adenosine, cytidine, guanosine and uridine, that are tailored for 2'-O-bis(acetoxyethoxy)methyl (ACE) RNA solid-phase synthesis. We additionally report on their incorporation into oligoribonucleotides including deprotection and purification. The methodological expansion of 2'-methylseleno labeling via ACE RNA chemistry is a major step to make Se-RNA generally accessible and to receive broad dissemination of the Se-approach for crystallographic studies on RNA. Thus far, preparation of 2'-methylseleno-modified oligoribonucleotides has been restricted to the 2'-O-[(triisopropylsilyl)oxy]methyl (TOM) and 2'-O-tert-butyldimethylsilyl (TBDMS) RNA synthesis methods.
Collapse
Affiliation(s)
| | | | | | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Chang YC, Herath J, Wang THH, Chow CS. Synthesis and solution conformation studies of 3-substituted uridine and pseudouridine derivatives. Bioorg Med Chem 2007; 16:2676-86. [PMID: 18078759 DOI: 10.1016/j.bmc.2007.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
Abstract
A series of 3-substituted uridine and pseudouridine derivatives, based on the naturally occurring 3-(3-amino-3-carboxypropyl) modification, were synthesized. Their aqueous solution conformations were determined by using circular dichroism and NMR spectroscopy. Functional group composition and chain length were shown to have only a subtle influence on the distribution of syn/anti conformations of the modified nucleosides. The dominating factor appears to be the glycosidic linkage (C- vs. N-glycoside) in determining the nucleoside conformation.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|