1
|
Yang L, Jiao YX, Quan YH, Li MY, Huang XY, Jin JZ, Li S, Quan JS, Jin CH. Synthesis and Antimicrobial Activity Evaluation of Pyridine Derivatives Containing Imidazo[2,1-b][1,3,4]Thiadiazole Moiety. Chem Biodivers 2024; 21:e202400135. [PMID: 38425248 DOI: 10.1002/cbdv.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Four series of novel pyridine derivatives (17 a-i, 18 a-i, 19 a-e, and 20 a-e) were synthesized and their antimicrobial activities were evaluated. Of all the target compounds, almost half target compounds showed moderate or high antibacterial activity. The 4-F substituted compound 17 d (MIC=0.5 μg/mL) showed the highest antibacterial activity, its activity was twice the positive control compound gatifloxacin (MIC=1.0 μg/mL). For fungus ATCC 9763, the activities of compounds 17 a and 17 d are equivalent to the positive control compound fluconazole (MIC=8 μg/mL). Furthermore, compounds 17 a and 17 d showed little cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration (200 μM). The results indicate that these compounds are valuable for further development as antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yu-Xin Jiao
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yan-Hua Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ming-Yu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xin-Yi Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jun-Zheng Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ji-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| |
Collapse
|
2
|
Khalifa Z, Upadhyay R, Patel AB. Arylidene and amino spacer-linked rhodanine-quinoline hybrids as upgraded antimicrobial agents. Chem Biol Drug Des 2023; 102:1632-1642. [PMID: 37697906 DOI: 10.1111/cbdd.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Antibiotic resistance associated with various microorganisms such as Gram-positive, Gram-negative, fungal strains, and multidrug-resistant tuberculosis increases the risk of healthcare survival. Preliminary therapeutics becoming ineffective that might lead to noteworthy mortality presents a crucial challenge for the scientific community. Hence, there is an urgent need to develop hybrid compounds as antimicrobial agents by combining two or more bioactive heterocyclic moieties into a single molecular framework with fewer side effects and a unique mode of action. This review highlights the recent advances (2013-2023) in the pharmacology of rhodanine-linked quinoline hybrids as more effective antimicrobial agents. In the drug development process, linker hybrids acquire the top position due to their excellent π-stacking and Van der Waals interaction with the DNA active sites of pathogens. A molecular hybridization strategy has been optimized, indicating that combining these two bioactive moieties with an arylidene and an amino spacer linker increases the antimicrobial potential and reduces drug resistance. Moreover, the structure-activity relationship study is discussed to express the role of various functional groups in improving and decrementing antimicrobial activities for rational drug design. Also, a linker approach may accelerate the development of dynamic antimicrobial agents through molecular hybridization.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
3
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, synthesis, molecular modelling and antitumor evaluation of S-glucosylated rhodanines through topo II inhibition and DNA intercalation. J Enzyme Inhib Med Chem 2023; 38:2163996. [PMID: 36629439 PMCID: PMC9848385 DOI: 10.1080/14756366.2022.2163996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the present study, 5-arylidene rhodanine derivatives 3a-f, N-glucosylation rhodanine 6, S-glucosylation rhodanine 7, N-glucoside rhodanine 8 and S-glucosylation 5-arylidene rhodanines 13a-c were synthesised and screened for cytotoxicity against a panel of cancer cells with investigating the effective molecular target and mechanistic cell death. The anomers were separated by flash column chromatography and their configurations were assigned by NMR spectroscopy. The stable structures of the compounds under study were modelled on a molecular level, and DFT calculations were carried out at the B3LYP/6-31 + G (d,p) level to examine their electronic and geometric features. A good correlation between the quantum chemical descriptors and experimental observations was found. Interestingly, compound 6 induced potent cytotoxicity against MCF-7, HepG2 and A549 cells, with IC50 values of 11.7, 0.21, and 1.7 µM, compared to Dox 7.67, 8.28, and 6.62 µM, respectively. For the molecular target, compound 6 exhibited topoisomerase II inhibition and DNA intercalation with IC50 values of 6.9 and 19.6 µM, respectively compared to Dox (IC50 = 9.65 and 31.27 µM). Additionally, compound 6 treatmnet significantly activated apoptotic cell death in HepG2 cells by 80.7-fold, it induced total apoptosis by 34.73% (23.07% for early apoptosis, 11.66% for late apoptosis) compared to the untreated control group (0.43%) arresting the cell population at the S-phase by 49.6% compared to control 39.15%. Finally, compound 6 upregulated the apoptosis-related genes, while it inhibted the Bcl-2 expression. Hence, glucosylated rhodanines may serve as a promising drug candidates against cancer with promising topoisomerase II and DNA intercalation.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt,CONTACT Ahmed I. Khodair Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Fatimah M. Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Siham A. Al-Issa
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Qi JD, Meng YQ, Sun J, Li WX, Zhai HX, Zhang C, Quan J, Jin CH. Synthesis and antimicrobial activity evaluation of pyrazole derivatives containing the imidazo[2,1-b][1,3,4]thiadiazole moiety. Arch Pharm (Weinheim) 2023:e2300110. [PMID: 37328442 DOI: 10.1002/ardp.202300110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Four series of novel pyrazole derivatives (compounds 17a-m, 18a-m, 19a-g, and 20a-g) were synthesized, and their antibacterial and antifungal activities were evaluated. Most of the target compounds (17a-m, 18k-m, and 19b-g) showed strong antifungal activity and high selectivity relative to both Gram-positive and Gram-negative bacteria. Among them, compounds 17l (minimum inhibitory concentration [MIC] = 0.25 µg/mL) and 17m (MIC = 0.25 µg/mL) showed the strongest antifungal activity, being 2- and 4-fold more active than the positive controls gatifloxacin and fluconazole, respectively. In particular, compound 17l showed little cytotoxicity against human LO2 cells and did not exhibit hemolysis at ultrahigh concentrations, as did the positive control compounds gatifloxacin and fluconazole. These results indicate that these compounds are valuable for further development as antifungal agents.
Collapse
Affiliation(s)
- Jun-Da Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Yu-Qing Meng
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Jingxin Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Hou-Xiang Zhai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Jishan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| |
Collapse
|
5
|
Almaz Z. Investigation of biological activities of various 1,2,3-triazole compounds: Their effects on cholinesterase enzymes, determination of antioxidant capacity and antimicrobial activity. J Biochem Mol Toxicol 2023; 37:e23277. [PMID: 36514839 DOI: 10.1002/jbt.23277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
1,2,3-triazoles are pharmaceutically significant compounds that have attracted recent interest from medicinal chemists because of their important biological activities. Addressed herein, some 1,2,3-triazoles were synthesized to investigate the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, antioxidant capacity, and antimicrobial effect. The antioxidant profile of 1,2,3-triazoles determined by varied bioanalytical antioxidant methods, including 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+ ), 1,1-diphenyl-2-picrylhydrazil (DPPH·), cupric ion (Cu2+ ) and ferric ion (Fe3+ ) ascorbic acid, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) were used as the standard compounds. In addition, the antibacterial and antifungal activities of these compounds were investigated against seven bacteria and three fungal species using the hollow agar method. As a result of these studies, it was determined that compound 4 showed the best antimicrobial activity and antioxidant activity close to the standards. Inhibitory effects and kinetic studies of these molecules on cholinesterase enzymes were performed. According to the results obtained, compound 4 showed stronger AChE inhibition and compound 3 stronger BChE inhibition compared to other compounds. In kinetic studies, it was found that AChE showed noncompetitive inhibition by compound 4, and BChE showed competitive inhibition by compound 3.
Collapse
Affiliation(s)
- Züleyha Almaz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Mus Alparslan University, Mus, Turkey
| |
Collapse
|
6
|
El-Bahnsawye M, Hussein MKA, Elmongy EI, Awad HM, Tolan AAEK, Moemen YS, El-Shaarawy A, El-Sayed IET. Design, Synthesis, and Antiproliferative Activity of Novel Neocryptolepine-Rhodanine Hybrids. Molecules 2022; 27:7599. [PMID: 36364427 PMCID: PMC9656124 DOI: 10.3390/molecules27217599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2024] Open
Abstract
A series of novel neocryptolepine-rhodanine hybrids (9a,b, 11a-d, 14, and 16a,b) have been synthesized by combining neocryptolepine core 5 modified at the C-11 position with rhodanine condensed with the appropriate aryl/hetero aryl aldehydes. Based on these findings, the structures of the hybrids were confirmed by spectral analyses. By employing the MTT assay, all hybrids were tested for their in vitro antiproliferative activity against two cancer cell lines, including MDA-MB-231 (human breast) and HepG-2 (hepatocellular carcinoma). Interestingly, the IC50 values of all hybrids except 9b and 11c showed activity comparable to the standard anticancer drug, 5-fluorouracil, against HepG-2 cancer cells. Furthermore, the cytotoxicity of all the synthesized hybrids was investigated on a normal skin human cell line (BJ-1), and the results showed that these compounds had no significant cytotoxicity toward these healthy cells at the highest concentration used in this study. This study also indicated that the active hybrids exert their cytotoxic activity via the induction of apoptosis. A molecular docking study was used to shed light on the molecular mechanism of their anticancer activity. The docking results revealed that the hybrids exert their mode of action through DNA intercalation. Furthermore, in silico assessment for pharmacokinetic properties was performed on the most potent compounds, which revealed candidates with good bioavailability, high tolerability with cell membranes, and positive drug-likeness values.
Collapse
Affiliation(s)
- Mohamed El-Bahnsawye
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mona K. Abo Hussein
- Clinical Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Elshaymaa I. Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanem Mohamed Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Aliaa Abd El-Kader Tolan
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Yasmine Shafik Moemen
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Ahmed El-Shaarawy
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | | |
Collapse
|
7
|
Żesławska E, Zakrzewski R, Nowicki A, Korona-Głowniak I, Lyčka A, Kania A, Zborowski KK, Suder P, Skórska-Stania A, Tejchman W. Synthesis, Crystal Structures, Lipophilic Properties and Antimicrobial Activity of 5-Pyridylmethylidene-3-rhodanine-carboxyalkyl Acids Derivatives. Molecules 2022; 27:molecules27133975. [PMID: 35807224 PMCID: PMC9268742 DOI: 10.3390/molecules27133975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The constant increase in the resistance of pathogenic bacteria to the commonly used drugs so far makes it necessary to search for new substances with antibacterial activity. Taking up this challenge, we obtained a series of rhodanine-3-carboxyalkyl acid derivatives containing 2- or 3- or 4-pyridinyl moiety at the C-5 position. These compounds were tested for their antibacterial and antifungal activities. They showed activity against Gram-positive bacteria while they were inactive against Gram-negative bacteria and yeast. In order to explain the relationship between the activity of the compounds and their structure, for selected derivatives crystal structures were determined using the X-ray diffraction method. Modeling of the isosurface of electron density was also performed. For all tested compounds their lipophilicity was determined by the RP-TLC method and by calculation methods. On the basis of the carried-out research, it was found that the derivatives with 1.5 N···S electrostatics interactions between the nitrogen atom in the pyridine moiety and the sulfur atom in the rhodanine system showed the highest biological activity.
Collapse
Affiliation(s)
- Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (E.Ż.); (A.K.)
| | - Robert Zakrzewski
- Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland; (R.Z.); (A.N.)
| | - Arkadiusz Nowicki
- Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland; (R.Z.); (A.N.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Antonín Lyčka
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové III, Czech Republic;
| | - Agnieszka Kania
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (E.Ż.); (A.K.)
| | | | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland;
| | - Agnieszka Skórska-Stania
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland; (K.K.Z.); (A.S.-S.)
| | - Waldemar Tejchman
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (E.Ż.); (A.K.)
- Correspondence:
| |
Collapse
|
8
|
Shi H, Zhuang Q, Zheng A, Zhan P, Guan Y, Wei D, Xu X, Wu T. Antibacterial Mechanism of N-PMI and the Characteristics of PMMA-Co-N-PMI Copolymer. Chem Biodivers 2022; 19:e202100753. [PMID: 35560720 DOI: 10.1002/cbdv.202100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
Aiming at the excellent killing effect of N-phenylmaleimide (N-PMI) on microorganisms, this article used structural simulation analysis, fluorescence analysis, confocal laser scanning microscope and SEM to find that the double bond in N-PMI could interact with the sulfur groups in the membrane protein, changing its conformation, rupturing the plasma membrane of the cell, leaking the contents, and ultimately causing the death of the microorganisms. Therefore, once the double bond participated in the polymerization, N-PMI lost its antimicrobial function. N-PMI could achieve azeotropic copolymerization with MMA through reactive extrusion polymerization. N-PMI with a content of 5 % can be evenly inserted into the PMMA chain segment during the copolymerization reaction, thereby increasing the Tg of pure PMMA by up to 15 °C, which provided the PMMA-co-PMI copolymer with resistance to boiling water sterilization advantageous conditions. In addition, N-PMI with a content of 5 % has little effect on the transparency of PMMA after participating in the copolymerization. Moreover, the trace amount of residual N-PMI made the material have excellent antimicrobial function, and the bacteriostatic zone is extremely small, which provided an excellent guarantee for the safety and durability of the material. As a medical biological material, the PMMA-co-PMI copolymer has a good industrialization application prospects.
Collapse
Affiliation(s)
- Han Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qixin Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Anna Zheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengfei Zhan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Guan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dafu Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiang Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Levshin IB, Simonov AY, Lavrenov SN, Panov AA, Grammatikova NE, Alexandrov AA, Ghazy ESMO, Savin NA, Gorelkin PV, Erofeev AS, Polshakov VI. Antifungal Thiazolidines: Synthesis and Biological Evaluation of Mycosidine Congeners. Pharmaceuticals (Basel) 2022; 15:ph15050563. [PMID: 35631390 PMCID: PMC9145892 DOI: 10.3390/ph15050563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study.
Collapse
Affiliation(s)
- Igor B. Levshin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexander Y. Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Sergey N. Lavrenov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexey A. Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
- Correspondence:
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexander A. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.A.A.); (E.S.M.O.G.)
| | - Eslam S. M. O. Ghazy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.A.A.); (E.S.M.O.G.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Nikita A. Savin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia;
| |
Collapse
|
10
|
Narayanan M, Jayashree T, Kandasamy S, Natarajan D, Liu G, Elesawy BH, Elfasakhany A, Pugazhendhi A. An in vitro investigation of the antidermatophytic, antioxidant, and nephroprotective activity of Solanum surattense. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
12
|
Concentration and solvent dependent SERS, DFT, MD simulations and molecular docking studies of a thioxothiazolidine derivative with antimicrobial properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bacha MM, Nadeem H, Zaib S, Sarwar S, Imran A, Rahman SU, Ali HS, Arif M, Iqbal J. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: synthesis, biological evaluation, molecular docking and simulation studies. BMC Chem 2021; 15:28. [PMID: 33906691 PMCID: PMC8080350 DOI: 10.1186/s13065-021-00756-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
In diabetes, increased accumulation of sorbitol has been associated with diabetic complications through polyol pathway. Aldose reductase (AR) is one of the key factors involved in reduction of glucose to sorbitol, thereby its inhibition is important for the management of diabetic complications. In the present study, a series of seven 4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetamide derivatives 3(a–g) were synthesized by the reaction of 5-(4-hydroxy-3-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2a) and 5-(4-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2b) with different amines. The synthesized compounds 3(a–g) were investigated for their in vitro aldehyde reductase (ALR1) and aldose reductase (ALR2) enzyme inhibitory potential. Compound 3c, 3d, 3e, and 3f showed ALR1 inhibition at lower micromolar concentration whereas all the compounds were more active than the standard inhibitor valproic acid. Most of the compounds were active against ALR2 but compound 3a and 3f showed higher inhibition than the standard drug sulindac. Overall, the most potent compound against aldose reductase was 3f with an inhibitory concentration of 0.12 ± 0.01 µM. In vitro results showed that vanillin derivatives exhibited better activity against both aldehyde reductase and aldose reductase. The molecular docking studies were carried out to investigate the binding affinities of synthesized derivatives with both ALR1 and ALR2. The binding site analysis of potent compounds revealed similar interactions as were found by cognate ligands within the active sites of enzymes.
Collapse
Affiliation(s)
- Mohsinul Mulk Bacha
- Department of Pharmaceutical Chemistry, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan.
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| | - Sadia Sarwar
- Department of Pharmacognosy, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
| | - Aqeel Imran
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shafiq Ur Rahman
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hafiz Saqib Ali
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Muazzam Arif
- Department of Pharmaceutical Chemistry, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
14
|
Yan Guo F, Ji Zheng C, Wang M, Ai J, Ying Han L, Yang L, Fang Lu Y, Xuan Yang Y, Guan Piao M, Piao HR, Jin CM, Jin CH. Synthesis and Antimicrobial Activity Evaluation of Imidazole-Fused Imidazo[2,1-b][1,3,4]thiadiazole Analogues. ChemMedChem 2021; 16:2354-2365. [PMID: 33738962 DOI: 10.1002/cmdc.202100122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Three series of new imidazole-fused imidazo[2,1-b][1,3,4]thiadiazole analogues (compounds 20 a-g, 21 a-g, and 22 a-g) have been synthesized, and their antibacterial and antifungal activities have been evaluated. All the target compounds showed strong antifungal activity and high selectivity for the test fungus Candida albicans over Gram-positive and -negative bacteria. N-((4-(2-Cyclopropyl-6-(4-fluorophenyl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl)-5-(6-methyl-pyridin-2-yl)-1H-imidazol-2-yl)methyl)aniline (21 a) showed the highest activity against C. albicans (MIC50 =0.16 μg/mL), 13 and three times that of the positive control compounds gatifloxacin and fluconazole, respectively. Compounds 21 a and 20 e did not show cytotoxicity against human foreskin fibroblast-1 cells, and compound 21 a was as safe as the positive control compounds in hemolysis tests. These results strongly suggest that some of the compounds produced in this work have value for development as antifungal agents.
Collapse
Affiliation(s)
- Fang Yan Guo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Chang Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Meiyuan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Jiangping Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Lan Ying Han
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Liu Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Ye Fang Lu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Yu Xuan Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Ming Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Chun-Mei Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, 977 Gongyuan Road, Yanji, 133002, P. R. China
| |
Collapse
|
15
|
Pan Z, An W, Wu L, Fan L, Yang G, Xu C. A New Synthesis Strategy for Rhodanine and Its Derivatives. Synlett 2021. [DOI: 10.1055/a-1485-5925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractRhodanine and its derivatives have been known as privileged structures in pharmacological research because of their wide spectrum of biological activities, but the synthesis method of rhodanine skeleton is limited. In this paper, not only rhodanine skeleton, but also N-aryl rhodanines can be directly prepared via the reaction of thioureas and thioglycolic acid in one step catalyzed by protic acid, which provides a new approach of the synthesis of rhodanine and its derivatives. The developed strategy is straightforward, efficient, atom economical, and convenient in good yields.
Collapse
|
16
|
Facile synthesis of 5-arylidene rhodanine derivatives using Na2SO3 as an eco-friendly catalyst. Access to 2-mercapto-3-aryl-acrylic acids and a benzoxaborole derivative. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Kaya İ, Erçağ A, Çulhaoğlu S. Synthesis, structure analysis, investigation of conductivity, thermal properties of polyphenol derivatives containing a rhodanine moiety and their Cu(II), VO(IV) complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Romo P, Quiroga J, Cobo J, Glidewell C. Regio- and stereospecific assembly of dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidines] from simple precursors using a one-pot procedure: synthesis, spectroscopic and structural characterization, and a proposed mechanism of formation. Acta Crystallogr C Struct Chem 2020; 76:779-785. [PMID: 32756041 PMCID: PMC7404731 DOI: 10.1107/s2053229620009791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 12/01/2022] Open
Abstract
The synthesis and characterization of three new dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1'SR,2'SR,7a'SR)-2'-(4-Chlorophenyl)-1-hexyl-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione, C28H30ClN3O2S2, (I), (3RS,1'SR,2'SR,7a'SR)-2'-(4-chlorophenyl)-1-benzyl-5-methyl-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione, C30H26ClN3O2S2, (II), and (3RS,1'SR,2'SR,7a'SR)-2'-(4-chlorophenyl)-5-fluoro-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one-pot reaction involving L-proline, a substituted isatin and (Z)-5-(4-chlorobenzylidene)-2-sulfanylidenethiazolidin-4-one [5-(4-chlorobenzylidene)rhodanine]. The compositions of (I)-(III) were established by elemental analysis, complemented by high-resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single-crystal X-ray structure analysis. A possible reaction mechanism for the formation of (I)-(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N-H...N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N-H...O and C-H...S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N-H...N and N-H...S=C hydrogen bonds.
Collapse
Affiliation(s)
- Pablo Romo
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia
| | - Jairo Quiroga
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | | |
Collapse
|
19
|
Sánchez-Recillas A, Navarrete-Vázquez G, Hidalgo-Figueroa S, Bonilla-Hernández M, Ortiz-Andrade R, Ibarra-Barajas M, Yáñez-Pérez V, Sánchez-Salgado JC. Pharmacological characterization of the cardiovascular effect of Nibethione: ex vivo, in vivo and in silico studies. J Pharm Pharmacol 2020; 72:1186-1198. [PMID: 32500554 DOI: 10.1111/jphp.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This work describes the vasorelaxant and antihypertensive effects and the mechanism of action on vascular smooth muscle cells of Nibethione, a synthetic thiazolidinedione derivative. Additionally, evidence of its cytotoxicity is assessed. METHODS Nibethione (NB) was synthesized, and its vasorelaxant effect and mechanism of action were assessed through ex vivo experiments. Molecular docking studies were used to predict the mode of interaction with L-type Ca2+ channel, and in vivo antihypertensive activity was assayed on spontaneously hypertensive rats (SHR). The cytotoxicity potential was evaluated in porcine aortic endothelial cells (PAECs) from primary explants. KEY FINDINGS Nibethione vasorelaxant effect was efficient on KCl (80 mm) and NE-contraction. This effect was deleteriously modified in the presence of potassium channel block drugs, while the maximal contraction induced with NE was significantly decreased by NB; the CaCl2 -induced contraction was abolished entirely. In vivo experiments showed that NB decreased diastolic blood pressure in 20.3 % after its administration on SHR. The molecular docking showed that NB blocks L-type Ca2+ channel, and in vitro tests showed that NB did not produce cytotoxic activity on PAECs (IC50 >1000 µm). CONCLUSIONS Nibethione showed in vivo antihypertensive and ex vivo vasorelaxant effects with implication of voltage-dependent L-type Ca2+ channel blocking, and this may contribute to the research of novel antihypertensive drugs.
Collapse
Affiliation(s)
- Amanda Sánchez-Recillas
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | - Gabriel Navarrete-Vázquez
- Laboratorio de Química Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Sergio Hidalgo-Figueroa
- CONACyT, IPICYT/Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas, San Luis Potosí, México
| | | | - Rolffy Ortiz-Andrade
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | - Maximiliano Ibarra-Barajas
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, Tlalnepantla de Baz, México
| | - Víctor Yáñez-Pérez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | | |
Collapse
|
20
|
Baroudi B, Argoub K, Hadji D, Benkouider A, Toubal K, Yahiaoui A, Djafri A. Synthesis and DFT calculations of linear and nonlinear optical responses of novel 2-thioxo-3-N,(4-methylphenyl) thiazolidine-4 one. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1736073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- B. Baroudi
- Laboratory of Organic Chemistry, Macromolecular and Materials, University Mustapha Stambouli of Mascara, Mascara, Algeria
| | - K. Argoub
- Laboratory of Organic Chemistry, Macromolecular and Materials, University Mustapha Stambouli of Mascara, Mascara, Algeria
| | - D. Hadji
- Department of Chemistry, Modeling and Calculation Methods Laboratory, University Dr Moulay Tahar of Saida, Saida, Algeria
| | - A.M. Benkouider
- Laboratory of Organic Chemistry, Macromolecular and Materials, University Mustapha Stambouli of Mascara, Mascara, Algeria
| | - K. Toubal
- Faculty of Sciences, Department of Chemistry, Laboratory of Applied Organic Synthesis, University of Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - A. Yahiaoui
- Laboratory of Organic Chemistry, Macromolecular and Materials, University Mustapha Stambouli of Mascara, Mascara, Algeria
| | - A. Djafri
- Faculty of Sciences, Department of Chemistry, Laboratory of Applied Organic Synthesis, University of Oran 1 Ahmed Ben Bella, Oran, Algeria
| |
Collapse
|
21
|
Zhang X, Qi F, Wang S, Song J, Huang J. Synthesis, structure, in silico ADME evaluation and in vitro antioxidant of (E)-N-(4-ethylphenyl)-2-(isomeric methylbenzylidene)thiosemicarbazone derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Sabahi-Agabager L, Nasiri F. One-pot, solvent-free facile stereoselective synthesis of rhodanine–furan hybrids from renewable resources. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1702196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Farough Nasiri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
23
|
El-Mawgoud HKA. Synthesis, in-Vitro Cytotoxicity and Antimicrobial Evaluations of Some Novel Thiazole Based Heterocycles. Chem Pharm Bull (Tokyo) 2019; 67:1314-1323. [PMID: 31787658 DOI: 10.1248/cpb.c19-00681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Condensation of rhodanine (1) with pyrazol-3(2H)-one derivatives (2a-f) gave 5-substituted-2-thioxo-1,3-thiazolidin-4-one derivatives (3a-f). Reaction of compound (1) with 2-arylmethylidene-malononitrile (4a-d) yielded the unexpected derivatives (5a-d). The latter compounds were subjected to cyclization reactions with malononitrile under different basic conditions, hydroxylamine hydrochloride and/or thiourea to furnish the fused thiazole derivatives (6a-d) and (8-10a-d). Coupling of (1) with diazotized aromatic amines (11a-c) in pyridine afforded the arylhydrazones (12a-c). Fusion of latter compounds with malononitrile afforded the thiazolopyridazine derivatives (13a-c). The structures of the newly synthesized compounds were elucidated via spectral data and elemental analyses. The in-vitro cytotoxic activity of compounds (3a-f) against the cell line MCF-7 was evaluated. Also, the synthesized products were investigated for their antibacterial and antifungal activities against six standard organisms including the G+ bacteria, Staphylococcus aureus and Bacillus subtilis, G- bacteria, Escherichia coli and Proteus vulgaris in addition to fungi, Candida albicans and Aspergillus flavus.
Collapse
|
24
|
Brahmbhatt H, Molnar M, Pavić V, Rastija V. Synthesis, Characterization, Antibacterial and Antioxidant Potency of NSubstituted- 2-Sulfanylidene-1,3-Thiazolidin-4-one Derivatives and QSAR Study. Med Chem 2019; 15:840-849. [PMID: 30520381 DOI: 10.2174/1573406415666181205163052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rhodanine is known for its potential and important role in the medicinal chemistry since its derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antidiabetic, antitubercular, anti-HIV, antiparasitic, antioxidant, anticancer, antiproliferative and anthelmintic agents. OBJECTIVES Since N-substituted rhodanine synthons are rarely commercially available, it is desirable to develop a straightforward synthetic approach for the synthesis of these key building blocks. The objective was to synthesize a series of rhodanine derivatives and to investigate their antimicrobial and antioxidant activity. Also, in order to obtain an insight into their structure-activity relationship, QSAR studies on the antioxidant activity were performed. METHODS 1H and 13C FTNMR spectra were recorded on Bruker Avance 600 MHz NMR Spectrometer, mass analysis was carried out on ESI+ mode by LC-MS/MS API 2000. 2,2-Diphenyl-1- picrylhydrazyl radical scavenging activity (% DPPH) was determined in dimethylsulfoxide (DMSO) as a solvent. The antibacterial activity was assessed against Bacillus subtilis, Staphylococcus aureus (Gram positive) and Escherichia coli, Pseudomonas aeruginosa (Gram negative) bacteria in terms of the minimum inhibitory concentrations (MICs) by a modified broth microdilution method. RESULTS A series of N-substituted-2-sulfanylidene-1,3-thiazolidin-4-ones were synthesized and characterized by 1H NMR, 13C NMR, FTIR, GC MS, LCMS/MS and C,H,N,S elemental analysis. Most of the synthesized compounds showed moderate to excellent antibacterial activity (MIC values from 125 μg/ml to 15.62 μg/mL) and DPPH scavenging activity (from 3.60% to 94.40%). Compound 2-thioxo-3- (4-(trifluoromethyl)-phenyl)thiazolidin-4-one showed the most potent activity against Escherichia coli (3.125 μg/mL), equivalent to antibiotic Amikacin sulphate and against Staphylococcus aureus (0.097 μg/ml), 100 times superior then antibiotic Amikacin sulphate. It has also shown a potent antioxidant activity (95% DPPH scavenging). Two best QSAR models, obtained by GETAWAY descriptor R7p+, Balabans molecular connectivity topological index and Narumi harmonic topological index (HNar), suggest that the enhanced antioxidant activity is related to the presence of pairs of atoms higher polarizability at the topological distance 7, substituted benzene ring and longer saturated aliphatic chain in N-substituents. CONCLUSION A series of novel N-substituted-2-thioxothiazolidin-4-one derivatives were designed, synthesized, characterized and evaluated for their antibacterial and antioxidant activity in vitro. Majority of the compounds showed excellent antibacterial activity compared to ampicillin and few of them have an excellent activity as compared to Chloramphenicol standard antibacterial drug. The QSAR study has clarified the importance of presenting a pairs of atoms higher polarizability, such as Cl and S at the specific distance, as well as the substituted benzene ring and a long saturated aliphatic chain in N-substituents for the enhanced antioxidant activity of 2-sulfanylidene-1,3- thiazolidin-4-one derivatives.
Collapse
Affiliation(s)
- Harshad Brahmbhatt
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Molnar
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Valentina Pavić
- The Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vesna Rastija
- Faculty of Agrobiotehnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
25
|
Verma D, Kumar P, Narasimhan B, Ramasamy K, Mani V, Mishra RK, Majeed ABA. Synthesis, antimicrobial, anticancer and QSAR studies of 1-[4-(substituted phenyl)-2-(substituted phenyl azomethyl)-benzo[b]-[1,4]diazepin-1-yl]-2-substituted phenylaminoethanones. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
26
|
Rančić MP, Stojiljković I, Milošević M, Prlainović N, Jovanović M, Milčić MK, Marinković AD. Solvent and substituent effect on intramolecular charge transfer in 5-arylidene-3-substituted-2,4-thiazolidinediones: Experimental and theoretical study. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
27
|
Maddila S, Gorle S, Jonnalagadda SB. Drug screening of rhodanine derivatives for antibacterial activity. Expert Opin Drug Discov 2019; 15:203-229. [PMID: 31777321 DOI: 10.1080/17460441.2020.1696768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Bacteriological infections are a major risk to human health. These include all hospital and public-acquired infections. In drug discovery, rhodanines are privileged heterocyclic frameworks. Their derivatives possess strong anti-bacterial activity and some of them have shown potent activity against multidrug-resistant pathogens, both under in vitro and in vivo conditions. To treat multi-drug resistant pathogens, the development of novel potent drugs, with superior anti-bacterial efficacy, is paramount. One avenue which shows promise is the design and development of novel rhodanines.Areas covered: This review summarizes the status on rhodanine-based derivatives and their anti-bacterial activity, based on published research over the past six years. Furthermore, to facilitate the design of novel derivatives with improved functions, their structure-activity relationships are assessed with reference to their efficacy as anti-bacterial agents and their toxicity.Expert opinion: The pharmacological activity of molecules bearing a rhodanine scaffold needs to be very critically assessed in spite of considerable information available from various biological evaluations. Although, some data on structure-activity relationship frameworks is available, information is not adequate to optimize the efficacy of rhodanine derivatives for different applications.
Collapse
Affiliation(s)
- Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | - Sridevi Gorle
- Department of Microbiology and Food Science & Technology, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | | |
Collapse
|
28
|
Mermer A, Demirbas N, Cakmak U, Colak A, Demirbas A, Alagumuthu M, Arumugam S. Discovery of Novel Sulfonamide‐Based 5‐Arylidenerhodanines as Effective Carbonic Anhydrase (II) Inhibitors: Microwave‐Assisted and Ultrasound‐Assisted One‐Pot Four‐Component Synthesis, Molecular Docking, and Anti‐CA II Screening Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arif Mermer
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ummuhan Cakmak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Colak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | | | - Sivakumar Arumugam
- Department of Biotechnology, School of Bio‐Science and TechnologyVIT Vellore India
| |
Collapse
|
29
|
Liu H, Sun D, Du H, Zheng C, Li J, Piao H, Li J, Sun L. Synthesis and biological evaluation of tryptophan-derived rhodanine derivatives as PTP1B inhibitors and anti-bacterial agents. Eur J Med Chem 2019; 172:163-173. [PMID: 30978561 DOI: 10.1016/j.ejmech.2019.03.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 02/09/2023]
Abstract
Several series of novel tryptophan-derived rhodanine derivatives were synthesized and identified as potential competitive PTP1B inhibitors and antibacterial agents. Among the compounds studied, 10b was found to have the best in vitro inhibition activity against PTP1B (IC50 = 0.36 ± 0.02 μM). In addition, the compounds also showed potent inhibition against other PTPs, especially CDC25B. Molecular docking analysis demonstrated that compounds 7c and 10b could occupy both the catalytic site and the adjacent pTyr binding site simultaneously. The compounds also showed higher levels of activity against gram-positive strains, the gram-negative strain Escherichia coli 1924, and multidrug-resistant gram-positive bacterial strains. Compounds 7c, 8c, 9e, 10a, and 10c had comparable or more potent antibacterial activity than the positive controls.
Collapse
Affiliation(s)
- Hongyan Liu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133000, PR China
| | - Danwen Sun
- College of Chemistry and Molecular Engineering, East China of Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
| | - Hang Du
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133000, PR China
| | - Changji Zheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133000, PR China
| | - Jingya Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huri Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133000, PR China.
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Liangpeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133000, PR China; College of Medicine, Yanbian University, Yanji, 133000, PR China.
| |
Collapse
|
30
|
Mermer A, Demirbas N, Colak A, Demir EA, Kulabas N, Demirbas A. One‐pot, Four‐Component Green Synthesis, Carbonic Anhydrase II Inhibition and Docking Studies of 5‐Arylidenerhodanines. ChemistrySelect 2018. [DOI: 10.1002/slct.201802677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arif Mermer
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Neslihan Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Ahmet Colak
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | | | - Necla Kulabas
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University Haydarpaşa 34668 İstanbul TURKEY
| | - Ahmet Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| |
Collapse
|
31
|
Chauhan M, Gaba A, Hong T, Esperance E, Johnson Q, Longia G, Chauhan BPS. Convenient and Template-Free Route to One-Pot Green Synthesis of Polyrhodanine Core-Shell Nanoparticles. ACS OMEGA 2018; 3:10974-10979. [PMID: 31459207 PMCID: PMC6645073 DOI: 10.1021/acsomega.8b01588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 06/10/2023]
Abstract
In this publication, a copper acetate-mediated rhodanine polymerization reaction is examined. It is demonstrated that at room temperature, Cu(II) acetate complexes with rhodanine generate solid nanospheres, which, upon heating in a microwave, results in polyrhodanine core-shell nano- and microsphere particles. The structural analysis of the polyrhodanine nanosphere produced by this efficient microwave-initiated method was conducted by Fourier transform infrared spectroscopy, UV-vis spectroscopy, scanning electron microscopy, and transmission electron microscopy. In addition, it is verified that this template-free, efficient, and versatile synthesis of polyrhodanine nanospheres can also be accomplished by introducing a strong oxidant KMnO4 as a cocatalyst with copper acetate without compromising the morphology of the resulting core-shell nanospheres. It is also demonstrated that the polyrhodanine nanospheres can be used to adsorb methyl orange dye, a known contaminant in industrial wastewater.
Collapse
Affiliation(s)
- Moni Chauhan
- Department
of Chemistry, Queensborough Community College
of City University of New York, Bayside, New York 11364, United
States
| | - Anjali Gaba
- Department
of Chemistry, Queensborough Community College
of City University of New York, Bayside, New York 11364, United
States
| | - Tao Hong
- Department
of Chemistry, Queensborough Community College
of City University of New York, Bayside, New York 11364, United
States
| | - Evens Esperance
- Department
of Chemistry, Queensborough Community College
of City University of New York, Bayside, New York 11364, United
States
| | - Qiaxian Johnson
- Engineered
Nanomaterials Laboratory, Department of Chemistry, William Patterson University, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Gurjeet Longia
- Engineered
Nanomaterials Laboratory, Department of Chemistry, William Patterson University, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Bhanu P. S. Chauhan
- Engineered
Nanomaterials Laboratory, Department of Chemistry, William Patterson University, 300 Pompton Road, Wayne, New Jersey 07470, United States
| |
Collapse
|
32
|
Molnar M, Brahmbhatt H, Rastija V, Pavić V, Komar M, Karnaš M, Babić J. Environmentally Friendly Approach to Knoevenagel Condensation of Rhodanine in Choline Chloride: Urea Deep Eutectic Solvent and QSAR Studies on Their Antioxidant Activity. Molecules 2018; 23:E1897. [PMID: 30060629 PMCID: PMC6222480 DOI: 10.3390/molecules23081897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
A series of rhodanine derivatives was synthesized in the Knoevenagel condensation of rhodanine and different aldehydes using choline chloride:urea (1:2) deep eutectic solvent. This environmentally friendly and catalyst free approach was very effective in the condensation of rhodanine with commercially available aldehydes, as well as the ones synthesized in our laboratory. All rhodanine derivatives were subjected to 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity investigation and quantitative structure-activity relationship (QSAR) studies were performed to elucidate their structure-activity relationship. The best multiple linear QSAR model demonstrate a stability in the internal validation and Y-randomization (R² = 0.81; F = 24.225; Q²loo = 0.72; R²Yscr = 0.148). Sphericity of the molecule, ratio of symmetric atoms enhanced atomic mass along the principle axes in regard to total number of atoms in molecule, and 3D distribution of the atoms higher electronegativity (O, N, and S) in molecules are important characteristic for antioxidant ability of rhodanine derivatives. Molecular docking studies were carried out in order to explain in silico antioxidant studies, a specific protein tyrosine kinase (2HCK). The binding interactions of the most active compound have shown strong hydrogen bonding and van der Waals interactions with the target protein.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia.
| | - Harshad Brahmbhatt
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia.
| | - Vesna Rastija
- Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia.
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia.
| | - Maja Karnaš
- Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia.
| | - Jurislav Babić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia.
| |
Collapse
|
33
|
Morgan S, Diab M, El-Sonbati A. Synthesis, spectroscopic, thermal properties, Calf thymus DNA binding and quantum chemical studies of M(II) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4281] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sh.M. Morgan
- Environmental Monitoring Laboratory; Ministry of Health; Port Said Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| | - A.Z. El-Sonbati
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| |
Collapse
|
34
|
Morgan S, Diab M, El-Sonbati A. Synthesis, molecular geometry, spectroscopic studies and thermal properties of Co(II) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4305] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sh.M. Morgan
- Environmental Monitoring Laboratory; Ministry of Health; Port Said Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| | - A.Z. El-Sonbati
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| |
Collapse
|
35
|
Trotsko N, Kosikowska U, Paneth A, Wujec M, Malm A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm J 2018; 26:568-577. [PMID: 29844729 PMCID: PMC5961620 DOI: 10.1016/j.jsps.2018.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 11/22/2022] Open
Abstract
A series of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moiety (28–65) were synthesized by the reaction of (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid chlorides with 5-(hydroxybenzylidene) thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin derivatives. Obtained compounds (28–65) were tested on reference strains of Gram-positive bacteria and ones of the Gram-negative bacteria. The antibacterial activity of target compounds was determined by broth microdilution method. These derivatives showed antibacterial activity generally against Gram-positive bacterial strains. Most active compounds possess MIC = 3.91 mg/L. Our results suggest that presence of electron-withdrawing substituent at phenyl ring is favorable while geometry of molecule does not play important role in antibacterial response. It was confirmed the lack of direct influence of substitution pattern at phenyl ring on antibacterial activity of closely related compounds of series 1–3. The antibacterial activity of some compounds was similar or higher than the activity of commonly used reference drugs such as oxacillin and cefuroxime.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University, 4A Chodźki, 20-093 Lublin, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Faculty of Pharmacy with Medical Analytics Division, Medical University, 1 Chodźki, 20-093 Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University, 4A Chodźki, 20-093 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University, 4A Chodźki, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Faculty of Pharmacy with Medical Analytics Division, Medical University, 1 Chodźki, 20-093 Lublin, Poland
| |
Collapse
|
36
|
Shinde DN, Trivedi R, Krishna JVS, Giribabu L, Sridhar B, Khursade PS, Prakasham RS. N-Arylation of ferrocenyl 2,4-thiazolidinedione conjugatesviaa copper-catalysed Chan–Lam cross coupling reaction with aryl boronic acids and their optoelectronic properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj01598h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper catalysed Chan–LamN-arylation of ferrocenyl 2,4-thiazolidinedione conjugates is described.
Collapse
Affiliation(s)
- Dilip Nivrutti Shinde
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jonnadula V. S. Krishna
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - L. Giribabu
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - B. Sridhar
- Centre for X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Parag S. Khursade
- Organic Synthesis and Process Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - R. S. Prakasham
- Organic Synthesis and Process Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| |
Collapse
|
37
|
S. Alneyadi S. Rhodanine as a Scaffold: A Short Review on Its Synthesis and Anti-Diabetic Activities. HETEROCYCLES 2018. [DOI: 10.3987/rev-17-878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
39
|
Brambilla LZS, Endo EH, Cortez DAG, Lima MMS, Dias Filho BP. Piper regnellii extract biopolymer-based microparticles: production, characterization and antifungal activity. J Appl Microbiol 2017; 124:75-84. [PMID: 29072357 DOI: 10.1111/jam.13618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 09/30/2017] [Indexed: 12/01/2022]
Abstract
AIMS This study aims to improve characteristics of Piper regnellii extract to make it applicable in formulations to treat dermatophytosis, also known as ringworm. METHODS AND RESULTS Microparticles (MPs) were produced by spray drying with gelatin, alginate and chitosan as encapsulating agents; characterized by scanning electron microscopy, encapsulation efficiency, thermal analyses and X-ray diffraction; and tested against Trichophyton rubrum by broth microdilution. Produced MPs had a mean diameter less than 2 μm, an increase in stability and release of the extract and good results for encapsulation efficiency, being 85·6% to gelatin MP, 71·3% to chitosan MP and 60·6% to alginate. MPs preserved the antifungal activity of P. regnellii extract T. rubrum. CONCLUSION Microencapsulation provided a significant improvement in the stability of the P. regnellii extract and better solubilization of chemical compounds, maintaining the antifungal effect against T. rubrum. SIGNIFICANCE AND IMPACT OF THE STUDY These results are useful for developing a formulation to treat fungal infections caused by dermatophyte species.
Collapse
Affiliation(s)
- L Z S Brambilla
- Post Graduate Program in Pharmaceutical Science, Universidade Estadual de Maringá, Paraná, Brazil
| | - E H Endo
- Post Graduate Program in Pharmaceutical Science, Universidade Estadual de Maringá, Paraná, Brazil
| | - D A G Cortez
- Department of Pharmacy, Universidade Estadual de Maringá, Paraná, Brazil
| | - M M S Lima
- Department of Pharmacy, Universidade Estadual de Maringá, Paraná, Brazil
| | - B P Dias Filho
- Department of Pharmacy, Universidade Estadual de Maringá, Paraná, Brazil
| |
Collapse
|
40
|
New chalcones bearing isatin scaffold: synthesis, molecular modeling and biological evaluation as anticancer agents. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3019-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Testing the ability of rhodanine and 2, 4-thiazolidinedione to interact with the human pancreatic alpha-amylase: electron-density descriptors complement molecular docking, QM, and QM/MM dynamics calculations. J Mol Model 2017; 23:252. [PMID: 28780749 DOI: 10.1007/s00894-017-3418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
A combined molecular docking, QM, and QM/MM dynamics modeling complemented with electron-density based descriptors computed at the B3LYP/6-311G++(d,p) level of theory have been carried out in order to understand the ability of the drugs rhodanine (RD) and 2,4-thiazolidinedione (TZD) in the effective treatment of type 2 diabetes mellitus. The global HOMO/LUMO descriptors provided just a very rough estimate of the chemical reactivity of both molecules, while the features of electron density studied in terms of its Laplacian and electrostatic potential allowed identifying the local electron rich/poor sites which were associated with the regions of electrophilic/nucleophilic attacks in RD and TZD. These results were thoroughly checked using the novel physically-grounded functional descriptors such as the phase-space Fisher information density and the internal kinetic electronic pressure density, which confirmed the information on bonding and lone electron pair details. The molecular docking, QM, and QM/MM dynamics analyses revealed the detailed picture of interactions of the drugs with the amino acid residues of the active site of the human pancreatic alpha-amylase protein (hPAA). The main difference in behavior of RD and TZD molecules is related to the hydrogen bond between the NH group of the ligand and Asp197. In hPAA complex with RD the proton from the NH group, which carries large positive charge (~ +0.45 e), spontaneously transfers to the carboxyl group of Asp197 and stays there, while in complex with TZD this proton frequently changes its position with the more preferable formation of covalent bond with the N atom. Upon deprotonation of the ligand, its hydrogen bonds with Arg195 and His299 become stronger. This process influences the binding with the difference of the binding constants of RD and TZD about 200 times with the higher value corresponding to the RD molecule. Thus, the cumulative results lead to the conclusion that rhodanine would have a higher binding affinity than the 2,4-thiazolidinedione molecule in the active site of human pancreatic alpha-amylase.
Collapse
|
42
|
Andleeb H, Khan I, Bauzá A, Tahir MN, Simpson J, Hameed S, Frontera A. Synthesis and supramolecular self-assembly of thioxothiazolidinone derivatives driven by H-bonding and diverse π–hole interactions: A combined experimental and theoretical analysis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Pansare DN, Shelke RN, Shinde DB. A Facial Synthesis and Anticancer Activity of (Z)-2-((5-(4-nitrobenzylidene)-4-oxo-4,5-dihydrothiazol-2-yl)amino)-substituted Acid. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dattatraya N. Pansare
- Department of Chemical Technology; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad 431 004 MS India
| | - Rohini N. Shelke
- Department of Chemistry; Deogiri College; Station Road Aurangabad 431 005 MS India
| | | |
Collapse
|
44
|
|
45
|
Zelisko N, Karpenko O, Muzychenko V, Gzella A, Grellier P, Lesyk R. trans -Aconitic acid-based hetero -Diels-Alder reaction in the synthesis of thiopyrano[2,3- d ][1,3]thiazole derivatives. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Kumar M, Narasimhan B, Ramasamy K, Mani V, Mishra RK, Majeed ABA. Synthesis, antimicrobial and cytotoxic evaluation of 4-(1-aryl-5-halo-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
47
|
Khatkar A, Nanda A, Kumar P, Narasimhan B. Synthesis, antimicrobial evaluation and QSAR studies of gallic acid derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
48
|
A facile synthesis of novel series ( Z )-2-((4-oxo-5-(thiophen-2-ylmethylene)-4,5-dihydrothiazol-2-yl)amino) substituted acid. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Kumar Singh A, Tripathi AC, Tewari A, Chawla V, Saraf SK. Design and microwave facilitated green synthesis of 2-[4-(3-carboxymethyl, methoxy carbonylmethyl-2,4-dioxo and 4-oxo-2-thioxo-thiazolidin-5-ylidenemethyl)-phenoxy]-2 and 3-methyl propionic acid ethyl ester derivatives: a novel structural class of antidyslipidemic agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1875-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
|