1
|
Lee YS, Remesic M, Ramos-Colon C, Wu Z, LaVigne J, Molnar G, Tymecka D, Misicka A, Streicher JM, Hruby VJ, Porreca F. Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism. Biomedicines 2021; 9:biomedicines9060625. [PMID: 34072734 PMCID: PMC8229567 DOI: 10.3390/biomedicines9060625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, we developed a series of mixed MOR/DOR agonists that are enkephalin-like tetrapeptide analogs with an N-phenyl-N-piperidin-4-ylpropionamide (Ppp) moiety at the C-terminus. Further SAR study on the analogs, initiated by the findings from off-target screening, resulted in the discovery of LYS744 (6, Dmt-DNle-Gly-Phe(p-Cl)-Ppp), a multifunctional ligand with MOR/DOR agonist and KOR antagonist activity (GTPγS assay: IC50 = 52 nM, Imax = 122% cf. IC50 = 59 nM, Imax = 100% for naloxone) with nanomolar range of binding affinity (Ki = 1.3 nM cf. Ki = 2.4 nM for salvinorin A). Based on its unique biological profile, 6 is considered to possess high therapeutic potential for the treatment of chronic pain by modulating pathological KOR activation while retaining analgesic efficacy attributed to its MOR/DOR agonist activity.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
- Correspondence: ; Tel.: +1-520-626-2820
| | - Michael Remesic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Cyf Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Zhijun Wu
- ABC Resource, Plainsboro, NJ 08536, USA;
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Gabriella Molnar
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - John M. Streicher
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| |
Collapse
|
2
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
4
|
Jinsmaa Y, Marczak ED, Balboni G, Salvadori S, Lazarus LH. Inhibition of the development of morphine tolerance by a potent dual mu-delta-opioid antagonist, H-Dmt-Tic-Lys-NH-CH2-Ph. Pharmacol Biochem Behav 2008; 90:651-7. [PMID: 18571706 PMCID: PMC2597683 DOI: 10.1016/j.pbb.2008.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/23/2008] [Accepted: 05/16/2008] [Indexed: 11/18/2022]
Abstract
Three analogues of the dual mu-/delta-antagonist, H-Dmt-Tic-R-NH-CH2-Ph (R = 1, Lys-Z; 2, Lys-Ac; 3, Lys) were examined in vivo: 1 and 2 exhibited weak bioactivity, while 3 injected intracerebroventricularly was a potent dual antagonist for morphine- and deltorphin C-induced antinociception comparable to naltrindole (delta-antagonist), but 93% as effective as naloxone (nonspecific opioid receptor antagonist) and 4% as active as CTOP, a mu antagonist. Subcutaneous or oral administration of 3 antagonized morphine-induced antinociception indicating passage across epithelial and blood-brain barriers. Mice pretreated with 3 before morphine did not develop morphine tolerance indicative of a potential clinical role to inhibit development of drug tolerance.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Ewa D. Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I-09126 Cagliary, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
5
|
Ryu EK, Wu Z, Chen K, Lazarus LH, Marczak ED, Sasaki Y, Ambo A, Salvadori S, Ren C, Zhao H, Balboni G, Chen X. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging. J Med Chem 2008; 51:1817-23. [PMID: 18311909 PMCID: PMC2667121 DOI: 10.1021/jm7014765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.
Collapse
Affiliation(s)
- Eun Kyoung Ryu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Zhanhong Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Kai Chen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ewa, D. Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yusuke Sasaki
- Tohoku Pharmaceutical University, 4-1, Komatsushima 4-chome, Aoba-Ku, Sendai 981-8558, Japan
| | - Akihiro Ambo
- Tohoku Pharmaceutical University, 4-1, Komatsushima 4-chome, Aoba-Ku, Sendai 981-8558, Japan
| | - Severo Salvadori
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-44100, Ferrara, Italy
| | - Chuancheng Ren
- Department of Neurosurgery, Stanford University, Stanford, CA 94305-5327, USA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA 94305-5327, USA
| | - Gianfranco Balboni
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-44100, Ferrara, Italy
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy
| | - Xiaoyuan Chen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| |
Collapse
|
6
|
Salvadori S, Trapella C, Fiorini S, Negri L, Lattanzi R, Bryant SD, Jinsmaa Y, Lazarus LH, Balboni G. A new opioid designed multiple ligand derived from the micro opioid agonist endomorphin-2 and the delta opioid antagonist pharmacophore Dmt-Tic. Bioorg Med Chem 2007; 15:6876-81. [PMID: 17851080 PMCID: PMC2084217 DOI: 10.1016/j.bmc.2007.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/09/2007] [Accepted: 08/17/2007] [Indexed: 11/29/2022]
Abstract
Opioid compounds with mixed micro agonist/delta antagonist properties could be used as analgesics with low propensity to induce tolerance and dependence. Here we report the synthesis of a new designed multiple ligand deriving from the micro selective agonist endomorphin-2 and the delta selective antagonist pharmacophore Dmt-Tic. As predicted, the resulting bivalent ligand showed a micro agonist/delta antagonist profile deriving from the corresponding activities of each pharmacophore.
Collapse
Affiliation(s)
- Severo Salvadori
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Claudio Trapella
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Stella Fiorini
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Lucia Negri
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University La Sapienza, I-00185 Rome, Italy
| | - Roberta Lattanzi
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University La Sapienza, I-00185 Rome, Italy
| | - Sharon D. Bryant
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yunden Jinsmaa
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gianfranco Balboni
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
- Department of Toxicology, University of Cagliari, I-09126 Cagliari, Italy
| |
Collapse
|