1
|
Chen Y, Liu F, Jin Q. Polymer-Mediated Delivery of Amphotericin B for Fungal Infections. Macromol Rapid Commun 2025:e2500013. [PMID: 40107872 DOI: 10.1002/marc.202500013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Invasive fungal infections have been an increasingly global issue with high mortality. Amphotericin B (AmB), as the "gold standard" antifungal drug, has broad-spectrum antifungal activity and low clinical resistance. Therefore, AmB is the most commonly used polyene antibiotic for the treatment of invasive fungal infections. However, the serious side effects as well as the low bioavailability of AmB strongly restrict its clinical applications. Polymer, with its diversified molecular design, is widely used in drug delivery in the form of polymeric prodrugs, nanoparticles, hydrogels, etc. Therefore, polymers hold great promise for the delivery of AmB in treating fungal infections. This review summarizes recent advances in polymer-based delivery systems of AmB for the treatment of fungal infections, including polymer-AmB conjugates, nanotechnology-based polymeric delivery systems, hydrogels, and polymeric microneedles. Taking advantage of polymer-based delivery strategies, special attention is paid to reducing the side effects and improving the bioavailability of AmB for safe and effective antifungal therapy. Finally, the limitations and possible future directions of polymer-based AmB delivery systems are discussed.
Collapse
Affiliation(s)
- Yongnan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
2
|
de Araújo RSA, Bernardo VG, Tibúrcio RDS, Bedor DCG, de Campos ML, Pontarolo R, de Sousa JMS, Rodrigues KADF, Scotti MT, Nayarisseri A, Marchand P, Mendonça-Junior FJB. 2-Aminothiophene Derivatives-New Drug Candidates Against Leishmaniasis: Drug Design, Synthesis, Pharmacomodulation, and Antileishmanial Activity. Pharmaceuticals (Basel) 2025; 18:125. [PMID: 39861186 PMCID: PMC11768359 DOI: 10.3390/ph18010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Leishmaniasis is one of the 20 Neglected Tropical Diseases according to the WHO, affecting approximately 12 million people in four continents, generating serious public health problems. The lack of therapeutic options, associated with toxicity and the emergence of resistance to the few available drugs, makes it urgent to develop new drug options. In this context, the aims of this work are to expand the knowledge about the pharmacophore group responsible for the antileishmanial potential of 2-aminothiophene derivatives. Thus, new compounds were synthesized containing chemical modifications at the C-3, C-4, and C-5 positions of the 2-aminothiophene ring, in addition to the S-Se bioisosterism. Methods: Dozens of 2-AT and 2-aminoselenophen (2-AS) derivatives were sequentially synthesized through applications of the Gewald reaction and were then evaluated in vitro for their activities against L. amazonensis and for cytotoxicity against macrophages. Results: Several series of compounds were synthesized, and it was possible to identify some substitution patterns favorable to the activity generating compounds with IC50 values below 10 µM, such as the non-essentiality of the presence of a carbonitrile group at C-3; the importance of the presence and size of cycloalkyl/piperidinyl chains at C-4 and C-5 in modulating the activity; and the increase in activity without affecting the safety of the S/Se bioisosteric substitution. Conclusions: Taken together, these findings reaffirm the great potential of 2-aminothiophenes to generate antileishmanial drug candidates and offers contributions to the drug design of compounds with an even more promising profile for the problem of leishmaniasis.
Collapse
Affiliation(s)
- Rodrigo Santos Aquino de Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58071-160, Brazil; (R.S.A.d.A.); (V.G.B.)
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Vitória Gaspar Bernardo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58071-160, Brazil; (R.S.A.d.A.); (V.G.B.)
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Robert da Silva Tibúrcio
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife 50740-520, Brazil;
| | - Danilo Cesar Galindo Bedor
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife 50740-520, Brazil;
| | | | - Roberto Pontarolo
- Departamento de Farmácia, Universidade Federal do Paraná, Av. Prefeito Lothário Meissner 632, Curitiba 80210-170, Brazil; (R.P.); (K.A.d.F.R.)
| | - Julyanne Maria Saraiva de Sousa
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, Parnaíba 64202-020, Brazil;
| | - Klinger Antonio da Franca Rodrigues
- Departamento de Farmácia, Universidade Federal do Paraná, Av. Prefeito Lothário Meissner 632, Curitiba 80210-170, Brazil; (R.P.); (K.A.d.F.R.)
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore 452010, India;
| | - Pascal Marchand
- Nantes Université, Cibles et médicaments des infections et de l’immunité, IICiMed, UR 1155, F-44000 Nantes, France;
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58071-160, Brazil; (R.S.A.d.A.); (V.G.B.)
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
3
|
Dash SK, Benival D, Jindal AB. Formulation Strategies to Overcome Amphotericin B Induced Toxicity. Mol Pharm 2024; 21:5392-5412. [PMID: 39373243 DOI: 10.1021/acs.molpharmaceut.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
4
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Muszalska-Kolos I, Dwiecki PM. Searching for Conjugates as New Structures for Antifungal Therapies. J Med Chem 2024; 67:4298-4321. [PMID: 38470824 DOI: 10.1021/acs.jmedchem.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.
Collapse
Affiliation(s)
- Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Pharmaceutical Company "Ziołolek" Sp. z o.o., Starolecka 189, 61-341 Poznan, Poland
| |
Collapse
|
6
|
Song S, Zhu L, Xu H, Wen Y, Feng R. Phenylboronic acid-installed poly(isobutene-alt-maleic anhydride) polymeric micelles for pH-dependent release of amphotericin B. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Amphotericin B-PEG Conjugates of ZnO Nanoparticles: Enhancement Antifungal Activity with Minimal Toxicity. Pharmaceutics 2022; 14:pharmaceutics14081646. [PMID: 36015271 PMCID: PMC9415822 DOI: 10.3390/pharmaceutics14081646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Amphotericin B (AMB) is commonly used to treat life-threatening systemic fungal infections. AMB formulations that are more efficient and less nephrotoxic are currently unmet needs. In the current study, new ZnO-PEGylated AMB (ZnO-AMB-PEG) nanoparticles (NPs) were synthesized and their antifungal effects on the Candida spp. were investigated. The size and zeta potential values of AMB-PEG and ZnO-AMB-PEG NPs were 216.2 ± 26.9 to 662.3 ± 24.7 nm and −11.8 ± 2.02 to −14.2 ± 0.94 mV, respectively. The FTIR, XRD, and EDX spectra indicated that the PEG-enclosed AMB was capped by ZnO, and SEM images revealed the ZnO distribution on the surface NPs. In comparison to ZnO-AMB NPs and free AMB against C.albicans and C.neoformans, ZnO-AMB-PEG NPs significantly reduced the MIC and MFC. After a week of single and multiple dosage, the toxicity was investigated utilizing in vitro blood hemolysis, in vivo nephrotoxicity, and hepatic functions. ZnO-AMB-PEG significantly lowered WBC count and hematocrit concentrations when compared to AMB and ZnO-AMB. RBC count and hemoglobulin content, on the other hand, were unaltered. ZnO-AMB-PEG considerably lowered creatinine and blood urea nitrogen (BUN) levels when compared to AMB and ZnO-AMB. The difference in liver function indicators was determined to be minor by all formulae. These findings imply that ZnO-AMB-PEG could be utilized in the clinic with little nephrotoxicity, although more research is needed to determine the formulation’s in vivo efficacy.
Collapse
|
8
|
Heras-Mozos R, Hernández R, Gavara R, Hernández-Muñoz P. Dynamic covalent chemistry of imines for the development of stimuli-responsive chitosan films as carriers of sustainable antifungal volatiles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Francis AP, Jayakrishnan A. Polymer–Drug Conjugates for Treating Local and Systemic Fungal Infections. ANTIMICROBIAL MATERIALS FOR BIOMEDICAL APPLICATIONS 2019. [DOI: 10.1039/9781788012638-00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In immunocompromised patients, fungal infections are the major cause of morbidity and mortality. Currently, three major classes of drugs—polyenes, azoles, and echinocandins—with different mechanisms of action are used as antifungals for systemic infections. However, these conventional drugs were reported to induce toxic effects due to their low specificity, narrow spectrum of activity and drug–drug interactions. Some of these limitations could be overcome by altering the properties of existing drugs through physical and chemical modifications. For example, modification of amphotericin B (AmB), a polyene antibiotic includes the micellar suspension of AmB in deoxycholic acid (Fungizone®), non-covalent AmB lipid complexes (ABLC™), liposomal AmB (AmBisome®), and AmB colloidal dispersion (Amphocil™). All these formulations ensure the smoother release of AmB accompanied by its restricted distribution in the kidney, thereby lowering its nephrotoxicity. Although various methods such as polymeric micelles, nanoparticles and dendrimers were explored for enhancing the efficacy of the antifungal drugs, polymer–drug conjugates of antifungal drugs have received more attention in recent years. Polymer–drug conjugates improve the aqueous solubility of water-insoluble drugs, are stable in storage and reduce the toxicity of highly toxic drugs and are capable of releasing the drug at the site of action. This chapter discusses the polymer conjugates of antifungal drugs, their merits, and demerits. Studies reported so far show that the polymer–drug conjugates have significant advantages compared to conventional dosage forms for antifungal therapy.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Biomaterials Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - A. Jayakrishnan
- Biomaterials Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| |
Collapse
|
10
|
Gurudevan S, Francis AP, Jayakrishnan A. Amphotericin B-albumin conjugates: Synthesis, toxicity and anti-fungal activity. Eur J Pharm Sci 2018; 115:167-174. [DOI: 10.1016/j.ejps.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
11
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Novel biodegradable poly(gamma-glutamic acid)–amphotericin B complexes show promise as improved amphotericin B formulations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1773-1783. [DOI: 10.1016/j.nano.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/11/2022]
|
13
|
Kothandaraman GP, Ravichandran V, Bories C, Loiseau PM, Jayakrishnan A. Anti-fungal and anti-leishmanial activities of pectin-amphotericin B conjugates. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Qiu L, Xu CR, Zhong F, Hong CY, Pan CY. Fabrication of Functional Nano-objects through RAFT Dispersion Polymerization and Influences of Morphology on Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18347-59. [PMID: 27399846 DOI: 10.1021/acsami.6b04693] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To study the influence of self-assembled morphologies on drug delivery, four different nano-objects, spheres, nanorods, nanowires, and vesicles having aldehdye-based polymer as core, were successfully prepared via alcoholic RAFT dispersion polymerization of p-(methacryloxyethoxy)benzaldehyde (MAEBA) using poly((N,N'-dimethylamino)ethyl methacrylate) (PDMAEMA) as a macro chain transfer agent (macro-CTA) for the first time. The morphologies and sizes of the four nano-objects were characterized by TEM and DLS, and the spheres with average diameter (D) of 70 nm, the nanorods with D of 19 nm and length of 140 nm, and the vesicles with D of 137 nm were used in the subsequent cellular internalization, in vitro release, and intracellular release of the drug. The anticancer drug doxorubicin (DOX) was conjugated onto the core polymers of nano-objects through condensation reaction between aldehyde groups of the PMAEBA with primary amine groups in the DOX. Because the aromatic imine is stable under neutral conditions, but is decomposed in a weakly acidic solution, in vitro release of the DOX from the DOX-loaded nano-objects was investigated in the different acidic solutions. All of the block copolymer nano-objects show very low cytotoxicity to HeLa cells up to the concentration of 1.2 mg/mL, but the DOX-loaded nano-objects reveal different cell viability and their IC50s increase as the following order: nanorods-DOX < vesicles-DOX < spheres-DOX. The IC50 of nanowires-DOX is the biggest among the four nano-objects owing to their too large size to be internalized. Endocytosis tests demonstrate that the internalization of vesicles-DOX by the HeLa cells is faster than that of the nanorods-DOX, and the spheres-DOX are the slowest to internalize among the studied nano-objects. Relatively more nanorods localized in the acidic organelles of the HeLa cells lead to faster intracellular release of the DOX, so the IC50 of nanorods is lower than that of the vesicles-DOX.
Collapse
Affiliation(s)
- Liang Qiu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, People's Republic of China
| | - Chao-Ran Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, People's Republic of China
| | - Feng Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, People's Republic of China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, People's Republic of China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, People's Republic of China
| |
Collapse
|
15
|
Tan TRM, Hoi KM, Zhang P, Ng SK. Characterization of a Polyethylene Glycol-Amphotericin B Conjugate Loaded with Free AMB for Improved Antifungal Efficacy. PLoS One 2016; 11:e0152112. [PMID: 27008086 PMCID: PMC4805162 DOI: 10.1371/journal.pone.0152112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/09/2016] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B (AMB) is a highly hydrophobic antifungal, whose use is limited by its toxicity and poor solubility. To improve its solubility, AMB was reacted with a functionalized polyethylene glycol (PEG), yielding soluble complex AmB-PEG formulations that theoretically comprise of chemically conjugated AMB-PEG and free AMB that is physically associated with the conjugate. Reverse-phase chromatography and size exclusion chromatography methods using HPLC were developed to separate conjugated AMB-PEG and free AmB, enabling the further characterization of these formulations. Using HPLC and dynamic light scattering analyses, it was observed that the AMB-PEG 2 formulation, having a higher molar ratio of 2 AMB: 1 PEG, possesses more free AMB and has relatively larger particle diameters compared to the AMB-PEG 1 formulation, that consists of 1 AMB: 1 PEG. The identity of the conjugate was also verified using mass spectrometry. AMB-PEG 2 demonstrates improved antifungal efficacy relative to AMB-PEG 1, without a concurrent increase in in vitro toxicity to mammalian cells, implying that the additional loading of free AMB in the AMB-PEG formulation can potentially increase its therapeutic index. Compared to unconjugated AMB, AMB-PEG formulations are less toxic to mammalian cells in vitro, even though their MIC50 values are comparatively higher in a variety of fungal strains tested. Our in vitro results suggest that AMB-PEG 2 formulations are two times less toxic than unconjugated AMB with antifungal efficacy on Candida albicans and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Tessa Rui Min Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kong Meng Hoi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Halperin A, Shadkchan Y, Pisarevsky E, Szpilman AM, Sandovsky H, Osherov N, Benhar I. Novel Water-Soluble Amphotericin B-PEG Conjugates with Low Toxicity and Potent in Vivo Efficacy. J Med Chem 2016; 59:1197-206. [DOI: 10.1021/acs.jmedchem.5b01862] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Evgeni Pisarevsky
- Schulich
Faculty of Chemistry, Israel Institute of Technology, 3200008 Technion-City, Haifa, Israel
| | - Alex M. Szpilman
- Schulich
Faculty of Chemistry, Israel Institute of Technology, 3200008 Technion-City, Haifa, Israel
| | | | | | | |
Collapse
|
17
|
Qiu L, Hong CY, Pan CY. Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery. Int J Nanomedicine 2015; 10:3623-40. [PMID: 26056444 PMCID: PMC4445873 DOI: 10.2147/ijn.s78355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Redox-and pH-sensitive branched star polymers (BSPs), BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAIGP)ns, have been successively prepared by two steps of reversible addition–fragmentation chain transfer (RAFT) polymerization. The first step is RAFT polymerization of 2-(N,N-dimethylaminoethyl)methacrylate (DMAEMA) and p-(methacryloxyethoxy) benzaldehyde (MAEBA) in the presence of divinyl monomer, 2,2′-dithiodiethoxyl dimethacrylate (DTDMA). The resultant branched polymers were used as a macro-RAFT agent in the subsequent RAFT polymerization. After hydrolysis of the BSPs to form BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAGP)ns (BSP-H), the anticancer drug doxorubicin (DOX) was covalently linked to branched polymer chains by reaction of primary amine of DOX and aldehyde groups in the polymer chains. Their compositions, structures, molecular weights, and molecular weight distributions were respectively characterized by nuclear magnetic resonance spectra and gel permeation chromatography measurements. The DOX-loaded micelles were fabricated by self-assembly of DOX-containing BSPs in water, which were characterized by transmission electron microscopy and dynamic light scattering. Aromatic imine linkage is stable in neutral water, but is acid-labile; controlled release of DOX from the BSP-H-DOX micelles was realized at pH values of 5 and 6, and at higher acidic solution, fast release of DOX was observed. In vitro cytotoxicity experiment results revealed low cytotoxicity of the BSPs and release of DOX from micelles in HepG2 and HeLa cells. Confocal laser fluorescence microscopy observations showed that DOX-loaded micelles have specific interaction with HepG2 cells. Thus, this type of BSP micelle is an efficient drug delivery system.
Collapse
Affiliation(s)
- Liang Qiu
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chun-Yan Hong
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Cai-Yuan Pan
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
18
|
Paramjot, Khan NM, Kapahi H, Kumar S, Bhardwaj TR, Arora S, Mishra N. Role of polymer–drug conjugates in organ-specific delivery systems. J Drug Target 2015; 23:387-416. [DOI: 10.3109/1061186x.2015.1016436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.07.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Nagamoto Y, Hattori A, Kakeya H, Takemoto Y, Takasu K. pH-sensitive DNA cleaving agents: in situ activation by ring contraction of benzo-fused cyclobutanols. Chem Commun (Camb) 2013; 49:2622-4. [DOI: 10.1039/c3cc39246e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Synthesis and characterization of pH-sensitive conjugate of isoniazid – methoxypoly(ethylene glycol)-b-poly(l-lysine). Bioorg Med Chem Lett 2012; 22:5952-5. [DOI: 10.1016/j.bmcl.2012.07.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 11/20/2022]
|
22
|
Toxicity mechanisms of amphotericin B and its neutralization by conjugation with arabinogalactan. Antimicrob Agents Chemother 2012; 56:5603-11. [PMID: 22908154 DOI: 10.1128/aac.00612-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amphotericin B (AMB) is an effective antifungal agent. However, its therapeutic use is hampered by its toxicity, mainly due to channel formation across kidney cell membranes and the disruption of postendocytic trafficking. We previously described a safe injectable AMB-arabinogalactan (AG) conjugate with neutralized toxicity. Here we studied the mechanism of the toxicity of free AMB and its neutralization by conjugation with AG. AMB treatment of a kidney cell line modulated the trafficking of three receptors (C-X-C chemokine receptor type 4 [CXCR4], M1 receptor, and human transferrin receptor [hTfnR]) due to an increase in endosomal pH. Similar data were also obtained in yeast but with an increase in vacuolar pH and the perturbation of Hxt2-green fluorescent protein (GFP) trafficking. The conjugation of AMB with AG neutralized all elements of the toxic activity of AMB in mammalian but not in fungal cells. Based on these results, we provide an explanation of how the conjugation of AMB with AG neutralizes its toxicity in mammalian cells and add to the knowledge of the mechanism of action of free AMB in both fungal and mammalian cells.
Collapse
|
23
|
Bílková E, Sedlák M, Imramovský A, Chárová P, Knotek P, Beneš L. Prednisolone-α-cyclodextrin-star poly(ethylene glycol) polypseudorotaxane with delayed pH-sensitivity as a targeted drug delivery system. Int J Pharm 2011; 414:42-7. [PMID: 21565261 DOI: 10.1016/j.ijpharm.2011.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 11/15/2022]
Abstract
The acylation of prednisolone 20-hydrazone with star poly(ethylene glycol) tetracarboxylic acid (M = 20,000) has been used to prepare the corresponding pH-sensitive conjugate. With α-cyclodextrin, this conjugate forms a polypseudorotaxane, which was characterised by means of (1)H NMR spectra, powder X-ray diffraction patterns and STM microscopy. The rate of acid-catalysed hydrolysis of the conjugate was studied under in vitro conditions in model media of hydrochloric acid solutions, phosphate and acetate buffers (pH 2-5.8). The acid-catalysed hydrolysis (at pH 2) of the polypseudorotaxane was ca 3.5 times slower than that of the original conjugate. After 1h in this medium, 86% of the covalently attached prednisolone remained unchanged. The prepared polypseudorotaxane represents a promising peroral transport system of prednisolone with a pH-sensitive linker with delayed acid-catalysed hydrolysis thanks to protection at the molecular level using α-cyclodextrin.
Collapse
Affiliation(s)
- Eliška Bílková
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | | | | | | | | | | |
Collapse
|
24
|
Synthesis and hydrolytic evaluation of acid-labile imine-linked cytotoxic isatin model systems. Bioorg Med Chem 2011; 19:1771-8. [DOI: 10.1016/j.bmc.2011.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 11/18/2022]
|
25
|
Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer–drug conjugates for novel molecular targets. Nanomedicine (Lond) 2010; 5:915-35. [DOI: 10.2217/nnm.10.71] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polymer therapeutics can be already considered as a promising field in the human healthcare context. The discovery of the enhanced permeability and retention effect by Maeda, together with the modular model for the polymer–drug conjugate proposed by Ringsdorf, directed the early steps of polymer therapeutics towards cancer therapy. Orthodox anticancer drugs were preferentially chosen in the development of the first conjugates. The fast evolution of polymer chemistry and bioconjugation techniques, and a deeper understanding of cell biology has opened up exciting new challenges and opportunities. Four main directions have to be considered to develop this ‘platform technology’ further: the control of the synthetic process, the exhaustive characterization of the conjugate architectures, the conquest of combination therapy and the disclosure of new therapeutic targets. We illustrate in this article the exciting approaches offered by polymer–drug conjugates beyond classical cancer therapy, focusing on new, more effective and selective targets in cancer and in their use as treatments for other major human diseases.
Collapse
Affiliation(s)
| | | | - Rut Lucas
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| |
Collapse
|
26
|
Bílková E, Imramovský A, Buchta V, Sedlák M. Targeted antifungal delivery system: β-Glucosidase sensitive nystatin–star poly(ethylene glycol) conjugate. Int J Pharm 2010; 386:1-5. [DOI: 10.1016/j.ijpharm.2009.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/15/2009] [Accepted: 10/17/2009] [Indexed: 11/15/2022]
|
27
|
Volmer AA, Szpilman AM, Carreira EM. Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep 2010; 27:1329-49. [DOI: 10.1039/b820743g] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Bílková E, Sedlák M, Dvořák B, Ventura K, Knotek P, Beneš L. Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties. Org Biomol Chem 2010; 8:5423-30. [DOI: 10.1039/c0ob00039f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Hudson SP, Langer R, Fink GR, Kohane DS. Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 2009; 31:1444-52. [PMID: 19942285 DOI: 10.1016/j.biomaterials.2009.11.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Invasive fungal infections can be devastating, particularly in immunocompromised patients, and difficult to treat with systemic drugs. Furthermore, systemic administration of those medications can have severe side effects. We have developed an injectable local antifungal treatment for direct administration into existing or potential sites of fungal infection. Amphotericin B (AmB), a hydrophobic, potent, and broad-spectrum antifungal agent, was rendered water-soluble by conjugation to a dextran-aldehyde polymer. The dextran-aldehyde-AmB conjugate retained antifungal efficacy against Candida albicans. Mixing carboxymethylcellulose-hydrazide with dextran-aldehyde formed a gel that cross-linked in situ by formation of hydrazone bonds. The gel provided in vitro release of antifungal activity for 11 days, and contact with the gel killed Candida for three weeks. There was no apparent tissue toxicity in the murine peritoneum and the gel caused no adhesions. Gels produced by entrapment of a suspension of AmB in CMC-dextran without conjugation of drug to polymers did not release fungicidal activity, but did kill on contact. Injectable systems of these types, containing soluble or insoluble drug formulations, could be useful for treatment of local antifungal infections, with or without concurrent systemic therapy.
Collapse
Affiliation(s)
- Sarah P Hudson
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
30
|
Imramovský A, Vinsová J, Férriz JM, Dolezal R, Jampílek J, Kaustová J, Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg Med Chem 2009; 17:3572-9. [PMID: 19403314 DOI: 10.1016/j.bmc.2009.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 11/28/2022]
Abstract
A new series of 30 N-protected amino acid esters were prepared as a part of ongoing search for new anti-tuberculosis active salicylanilides. The esters possess high in vitro activity against Mycobacterium tuberculosis, Mycobacterium avium, and two strains of Mycobacterium kansasii, where one is an isolate from the patient, with MIC in the range 1-32 micromol/L for all tested strains. The prepared esters can be considered as prodrugs with better bio-availability and as more efficient transport forms through the mycobacterial cell membranes due to the higher lipophilicity. The experimental and calculated lipophilicity, stability, antituberculotic activity, cytotoxicity as well as the quantitative structure-activity relationships (QSARs) explored by the Intelligent Problem Solver (IPS) in Trajan Neural Network Simulator 6.0 are presented.
Collapse
Affiliation(s)
- Ales Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, nam. Cs. Legii 565, 532 10 Pardubice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu J, Zahedi P, Zeng F, Allen C. Nano-Sized Assemblies of a PEG-Docetaxel Conjugate as a Formulation Strategy for Docetaxel. J Pharm Sci 2008; 97:3274-90. [DOI: 10.1002/jps.21245] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
New targeting system for antimycotic drugs: β-Glucosidase sensitive Amphotericin B–star poly(ethylene glycol) conjugate. Bioorg Med Chem Lett 2008; 18:2952-6. [DOI: 10.1016/j.bmcl.2008.03.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/20/2008] [Accepted: 03/22/2008] [Indexed: 01/16/2023]
|