1
|
Hidaka T, Sugiyama H. Chemical Approaches to the Development of Artificial Transcription Factors Based on Pyrrole-Imidazole Polyamides. CHEM REC 2020; 21:1374-1384. [PMID: 33332727 DOI: 10.1002/tcr.202000158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
To maintain the functions of living organisms, cells have developed complex gene regulatory networks. Transcription factors have a central role in spatiotemporal control of gene expression and this has motivated us to develop artificial transcription factors that mimic their function. We found that three functions could be mimicked by applying our chemical approaches: i) efficient delivery into organelles that contain target DNA, ii) specific DNA binding to the target genomic region, and iii) regulation of gene expression by interaction with other transcription coregulators. We chose pyrrole-imidazole polyamides (PIPs), sequence-selective DNA binding molecules, as DNA binding domains, and have achieved each of the required functions by introducing other functional moieties. The developed artificial transcription factors have potential as chemical tools that can be used to artificially modulate gene expression to enable cell fate control and to correct abnormal gene regulation for therapeutic purposes.
Collapse
Affiliation(s)
- Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Smith AR, Ikkanda BA, Holman GG, Iverson BL. Subtle recognition of 14-base pair DNA sequences via threading polyintercalation. Biochemistry 2012; 51:4445-52. [PMID: 22554127 PMCID: PMC3369501 DOI: 10.1021/bi300317n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecules that bind DNA in a sequence-specific manner could act as antibiotic, antiviral, or anticancer agents because of their potential ability to manipulate gene expression. Our laboratory has developed threading polyintercalators based on 1,4,5,8-naphthalene diimide (NDI) units connected in a head-to-tail fashion by flexible peptide linkers. Previously, a threading tetraintercalator composed of alternating minor-major-minor groove-binding modules was shown to bind specifically to a 14 bp DNA sequence with a dissociation half-life of 16 days [Holman, G. G., et al. (2011) Nat. Chem. 3, 875-881]. Herein are described new NDI-based tetraintercalators with a different major groove-binding module and a reversed N to C directionality of one of the minor groove-binding modules. DNase I footprinting and kinetic analyses revealed that these new tetraintercalators are able to discriminate, by as much as 30-fold, 14 bp DNA binding sites that differ by 1 or 2 bp. Relative affinities were found to correlate strongly with dissociation rates, while overall C(2) symmetry in the DNA-binding molecule appeared to contribute to enhanced association rates.
Collapse
Affiliation(s)
- Amy Rhoden Smith
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
4
|
Zhu Y, He J, Shi Q, Yang B, Tang M. Binding properties and conformational dynamics of reversible amidines with DNA from a theoretical view. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Collar CJ, Lee M, Wilson WD. Setting Anchor in the Minor Groove: in Silico Investigation into Formamido N-Methylpyrrole and N-Methylimidazole Polyamides Bound by Cognate DNA Sequences. J Chem Inf Model 2010; 50:1611-22. [DOI: 10.1021/ci100191a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catharine J. Collar
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and Department of Chemistry, Division of Natural and Applied Sciences, Hope College, Holland, Michigan 49423
| | - Moses Lee
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and Department of Chemistry, Division of Natural and Applied Sciences, Hope College, Holland, Michigan 49423
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and Department of Chemistry, Division of Natural and Applied Sciences, Hope College, Holland, Michigan 49423
| |
Collapse
|
6
|
Selective binding of small molecules to DNA: Application and perspectives. Colloids Surf B Biointerfaces 2010; 79:1-4. [DOI: 10.1016/j.colsurfb.2010.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 11/22/2022]
|
7
|
Franks A, Tronrud C, Kiakos K, Kluza J, Munde M, Brown T, Mackay H, Wilson WD, Hochhauser D, Hartley JA, Lee M. Targeting the ICB2 site of the topoisomerase IIalpha promoter with a formamido-pyrrole-imidazole-pyrrole H-pin polyamide. Bioorg Med Chem 2010; 18:5553-61. [PMID: 20615712 DOI: 10.1016/j.bmc.2010.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/30/2022]
Abstract
The synthesis, DNA binding characteristics and biological activity of an N-formamido pyrrole- and imidazole-containing H-pin polyamide (f-PIP H-pin, 2) designed to selectively target the ICB2 site on the topoIIalpha promoter, is reported herein. Thermal denaturation, circular dichroism, isothermal titration calorimetry, surface plasmon resonance and DNase I footprinting studies demonstrated that 2 maintained the selectivity of the unlinked parent monomer f-PIP (1) and with a slight enhancement in binding affinity (K(eq)=5 x 10(5)M(-1)) to the cognate site (5'-TACGAT-3'). H-pin 2 also exhibited comparable ability to inhibit NF-Y binding to 1, as demonstrated by gel shift studies. However, in stark contrast to monomer 1, the H-pin did not affect the up-regulation of topoisomerase IIalpha (topoIIalpha) in cells (Western blot), suggesting that the H-pin does not enter the nucleus. This study is the first to the authors' knowledge that reports such a markedly different cellular response between two compounds of almost identical binding characteristics.
Collapse
Affiliation(s)
- Andrew Franks
- Division of Natural and Applied Sciences, Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wetzler M, Wemmer DE. Facile Dimer Synthesis for DNA-Binding Polyamide Ligands. Org Lett 2010; 12:3488-90. [DOI: 10.1021/ol1013262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Modi Wetzler
- Chemimstry Department, University of California, Berkeley, California 94720
| | - David E. Wemmer
- Chemimstry Department, University of California, Berkeley, California 94720
| |
Collapse
|
9
|
Survey of the year 2008: applications of isothermal titration calorimetry. J Mol Recognit 2010; 23:395-413. [DOI: 10.1002/jmr.1025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
11
|
Chavda S, Dittenhafer K, Wu K, Merrick C, Desta D, Cordes E, Babu B, Tzou S, Brockway O, Sjoholm R, Lee M. DNA sequence-selective monoheterocyclic analog of Hoechst 33258: cytotoxicity and antiparasitic properties. HETEROCYCL COMMUN 2010. [DOI: 10.1515/hc.2010.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Westrate L, Mackay H, Brown T, Nguyen B, Kluza J, Wilson WD, Lee M, Hartley JA. Effects of the N-Terminal Acylamido Group of Imidazole- and Pyrrole-Containing Polyamides on DNA Sequence Specificity and Binding Affinity. Biochemistry 2009; 48:5679-88. [DOI: 10.1021/bi900242t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laura Westrate
- Division of Natural Sciences and Department of Chemistry, 35 East 12th Street, Hope College, Holland, Michigan 49422
| | - Hilary Mackay
- Division of Natural Sciences and Department of Chemistry, 35 East 12th Street, Hope College, Holland, Michigan 49422
| | - Toni Brown
- Division of Natural Sciences and Department of Chemistry, 35 East 12th Street, Hope College, Holland, Michigan 49422
| | - Binh Nguyen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Jerome Kluza
- Cancer Research UK Drug−DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6BT, U.K
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Moses Lee
- Division of Natural Sciences and Department of Chemistry, 35 East 12th Street, Hope College, Holland, Michigan 49422
| | - John A. Hartley
- Cancer Research UK Drug−DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|