1
|
Marzano M, D'Errico S, Greco F, Falanga AP, Terracciano M, Di Prisco D, Piccialli G, Borbone N, Oliviero G. Polymorphism of G-quadruplexes formed by short oligonucleotides containing a 3'-3' inversion of polarity: From G:C:G:C tetrads to π-π stacked G-wires. Int J Biol Macromol 2023; 253:127062. [PMID: 37748594 DOI: 10.1016/j.ijbiomac.2023.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-wires are supramolecular DNA structures based on the G-quadruplex (G4) structural motif obtained by the self-assembly of interlocked slipped G-rich oligonucleotide (ON) strands, or by end-to-end stacking of G4 units. Despite the increasing interest towards G-wires due to their potential applications in DNA nanotechnologies, the self-assembly process to obtain G-wires having a predefined length and stability is still neither completely understood nor controlled. In our previous studies, we demonstrated that the d(5'CG2-3'-3'-G2C5') ON, characterized by the presence of a 3'-3'-inversion of polarity site self-assembles into a G-wire structure when annealed in the presence of K+ ions. Herein, by using CD, PAGE, HPLC size exclusion chromatography, and NMR investigations we studied the propensity of shorter analogues having sequences 5'CGn-3'-3'-GmC5' (with n = 1 and 1 ≤ m ≤ 3) to form the corresponding G-quadruplexes and stacked G-wires. The results revealed that the formation of G-wires starting from d(5'CGn-3'-3'-GmC5') ONs is possible only for the sequences having n and m > 1 in which both guanosines flanking the 5'-ending cytosines are not involved into the 3'-3' phosphodiester bond.
Collapse
Affiliation(s)
- Maria Marzano
- CESTEV, University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daria Di Prisco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Greco F, Falanga AP, Terracciano M, D’Ambrosio C, Piccialli G, Oliviero G, Roviello GN, Borbone N. CD, UV, and In Silico Insights on the Effect of 1,3-Bis(1'-uracilyl)-2-propanone on Serum Albumin Structure. Biomolecules 2022; 12:1071. [PMID: 36008965 PMCID: PMC9405946 DOI: 10.3390/biom12081071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
1,3-diaryl-2-propanone derivatives are synthetic compounds used as building blocks for the realization not only of antimicrobial drugs but also of new nanomaterials thanks to their ability to self-assemble in solution and interact with nucleopeptides. However, their ability to interact with proteins is a scarcely investigated theme considering the therapeutic importance that 1,3-diaryl-2-propanones could have in the modulation of protein-driven processes. Within this scope, we investigated the protein binding ability of 1,3-bis(1'-uracilyl)-2-propanone, which was previously synthesized in our laboratory utilizing a Dakin-West reaction and herein indicated as U2O, using bovine serum albumin (BSA) as the model protein. Through circular dichroism (CD) and UV spectroscopy, we demonstrated that the compound, but not the similar thymine derivative T2O, was able to alter the secondary structure of the serum albumin leading to significant consequences in terms of BSA structure with respect to the unbound protein (Δβ-turn + Δβ-sheet = +23.6%, Δα = -16.7%) as revealed in our CD binding studies. Moreover, molecular docking studies suggested that U2O is preferentially housed in the domain IIIB of the protein, and its affinity for the albumin is higher than that of the reference ligand HA 14-1 (HDOCK score (top 1-3 poses): -157.11 ± 1.38 (U2O); -129.80 ± 6.92 (HA 14-1); binding energy: -7.6 kcal/mol (U2O); -5.9 kcal/mol (HA 14-1)) and T2O (HDOCK score (top 1-3 poses): -149.93 ± 2.35; binding energy: -7.0 kcal/mol). Overall, the above findings suggest the ability of 1,3-bis(1'-uracilyl)-2-propanone to bind serum albumins and the observed reduction of the α-helix structure with the concomitant increase in the β-structure are consistent with a partial protein destabilization due to the interaction with U2O.
Collapse
Affiliation(s)
- Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
- Institute of Applied Sciences and Intelligent Systems “Eduardo Caianiello”, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Carlotta D’Ambrosio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy;
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
- Institute of Applied Sciences and Intelligent Systems “Eduardo Caianiello”, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy;
| |
Collapse
|
3
|
Scognamiglio PL, Vicidomini C, Fontanella F, De Stefano C, Palumbo R, Roviello GN. Protein Binding of Benzofuran Derivatives: A CD Spectroscopic and In Silico Comparative Study of the Effects of 4-Nitrophenyl Functionalized Benzofurans and Benzodifurans on BSA Protein Structure. Biomolecules 2022; 12:biom12020262. [PMID: 35204762 PMCID: PMC8961527 DOI: 10.3390/biom12020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Benzofuran derivatives are synthetic compounds that are finding an increasing interest in the scientific community not only as building blocks for the realization of new materials, but also as potential drugs thanks to their ability to interact with nucleic acids, interfere with the amyloid peptide aggregation and cancer cell cycle. However, their ability to interact with proteins is a theme still in need of investigation for the therapeutic importance that benzofurans could have in the modulation of protein-driven processes and for the possibility of making use of serum albumins as benzofurans delivery systems. To this scope, we investigated the protein binding ability of two 4-nitrophenyl-functionalized benzofurans previously synthesized in our laboratory and herein indicated as BF1 and BDF1, which differed for the number of furan rings (a single moiety in BF1, two in BDF1), using bovine serum albumin (BSA) as a model protein. By circular dichroism (CD) spectroscopy we demonstrated the ability of the two heteroaromatic compounds to alter the secondary structure of the serum albumin leading to different consequences in terms of BSA thermal stability with respect to the unbound protein (ΔTm > 3 °C for BF1, −0.8 °C for BDF1 with respect to unbound BSA, in PBS buffer, pH 7.5) as revealed in our CD melting studies. Moreover, a molecular docking study allowed us to compare the possible ligand binding modes of the mono and difuranic derivatives showing that while BF1 is preferentially housed in the interior of protein structure, BDF1 is predicted to bind the albumin surface with a lower affinity than BF1. Interestingly, the different affinity for the protein target predicted computationally was confirmed also experimentally by fluorescence spectroscopy (kD = 142.4 ± 64.6 nM for BDF1 vs. 28.4 ± 10.1 nM for BF1). Overall, the above findings suggest the ability of benzofurans to bind serum albumins that could act as their carriers in drug delivery applications.
Collapse
Affiliation(s)
| | - Caterina Vicidomini
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy; (C.V.); (R.P.)
| | - Francesco Fontanella
- Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, 03043 Cassino (FR), Italy; (F.F.); (C.D.S.)
| | - Claudio De Stefano
- Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, 03043 Cassino (FR), Italy; (F.F.); (C.D.S.)
| | - Rosanna Palumbo
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy; (C.V.); (R.P.)
- Correspondence: ; Tel.: +39-3491928417
| |
Collapse
|
4
|
Cao Y, Li W, Gao T, Ding P, Pei R. One Terminal Guanosine Flip of Intramolecular Parallel G-Quadruplex: Catalytic Enhancement of G-Quadruplex/Hemin DNAzymes. Chemistry 2020; 26:8631-8638. [PMID: 32428287 DOI: 10.1002/chem.202001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
5
|
Cao Y, Ding P, Yang L, Li W, Luo Y, Wang J, Pei R. Investigation and improvement of catalytic activity of G-quadruplex/hemin DNAzymes using designed terminal G-tetrads with deoxyadenosine caps. Chem Sci 2020; 11:6896-6906. [PMID: 34094131 PMCID: PMC8159390 DOI: 10.1039/d0sc01905d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is generally acknowledged that G-quadruplexes (G4s) acquire peroxidase activity upon interaction with hemin. Hemin has been demonstrated to bind selectively to the 3′-terminal G-tetrad of parallel G4s via end-stacking; however, the relationships between different terminal G-tetrads and the catalytic functions of G4/hemin DNAzymes are not fully understood. Herein, the oligonucleotide d(AGGGGA) and its three analogues, d(AGBrGBrGGA), d(AGBrGGGBrA) and d(AGBrGGBrGA) (GBr indicates 8-bromo-2′-deoxyguanosine), were designed. These oligonucleotides form three parallel G4s and one antiparallel G4 without loop regions. The scaffolds had terminal G-tetrads that were either anti-deoxyguanosines (anti-dGs) or syn-deoxyguanosines (syn-dGs) at different proportions. The results showed that the parallel G4 DNAzymes exhibited 2 to 5-fold higher peroxidase activities than the antiparallel G4 DNAzyme, which is due to the absence of the 3′-terminal G-tetrad in the antiparallel G4. Furthermore, the 3′-terminal G-tetrad consisting of four anti-dGs in parallel G4s was more energetically favorable and thus more preferable for hemin stacking compared with that consisting of four syn-dGs. We further investigated the influence of 3′ and 5′ deoxyadenosine (dA) caps on the enzymatic performance by adding 3′-3′ or 5′-5′ phosphodiester bonds to AG4A. Our data demonstrated that 3′ dA caps are versatile residues in promoting the interaction of G4s with hemin. Thus, by increasing the number of 3′ dA caps, the DNAzyme of 3′A5′-5′GG3′-3′GG5′-5′A3′ with two 5′-terminal G-tetrads can exhibit significantly high catalytic activity, which is comparable to that of 5′A3′-3′GG5′-5′GG3′-3′A5′ with two 3′-terminal G-tetrads. This study may provide insights into the catalytic mechanism of G4-based DNAzymes and strategies for promoting their catalytic activities. Investigation of the peroxidase activities of G4/hemin DNAzymes using designed terminal G-tetrads by eliminating the steric effect of loop regions.![]()
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| |
Collapse
|
6
|
Marzano M, Falanga AP, Dardano P, D'Errico S, Rea I, Terracciano M, De Stefano L, Piccialli G, Borbone N, Oliviero G. π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Org Chem Front 2020. [DOI: 10.1039/d0qo00561d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rod-shaped G-wire assemblies potentially useful to obtain new hybrid and conducting materials were obtained by annealing short G-rich oligonucleotides incorporating a 3′–3′ inversion of polarity site in the presence of potassium or ammonium ions.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Andrea P. Falanga
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | | | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Monica Terracciano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Gennaro Piccialli
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Nicola Borbone
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies
- University of Naples Federico II
- 80131 – Naples
- Italy
| |
Collapse
|
7
|
Virgilio A, Esposito V, Lejault P, Monchaud D, Galeone A. Improved performances of catalytic G-quadruplexes (G4-DNAzymes) via the chemical modifications of the DNA backbone to provide G-quadruplexes with double 3'-external G-quartets. Int J Biol Macromol 2019; 151:976-983. [PMID: 31747569 DOI: 10.1016/j.ijbiomac.2019.10.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
Here we report on the design of a new catalytic G-quadruplex-DNA system (G4-DNAzyme) based on the modification of the DNA scaffold to provide the DNA pre-catalyst with two identical 3'-ends, known to be more catalytically proficient than the 5'-ends. To this end, we introduced a 5'-5' inversion of polarity site in the middle of the G4-forming sequences AG4A and AG6A to obtain d(3'AGG5'-5'GGA3') (or AG2-G2A) and d(3'AGGG5'-5'GGGA3') (or AG3-G3A) that fold into stable G4 whose tetramolecular nature was confirmed via nuclear magnetic resonance (NMR) and circular dichroism (CD) investigations. Both AG2-G2A and AG3-G3A display two identical external G-quartets (3'-ends) known to interact with the cofactor hemin with a high efficiency, making the resulting complex competent to perform hemoprotein-like catalysis (G4-DNAzyme). A systematic comparison of the performances of modified and unmodified G4s lends credence to the relevance of the modification exploited here (5'-5' inversion of polarity site), which represents a new chemical opportunity to improve the overall activity of catalytic G4s.
Collapse
Affiliation(s)
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Pauline Lejault
- ICMUB CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, Dijon 21078, France
| | - David Monchaud
- ICMUB CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, Dijon 21078, France.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
8
|
Amato T, Virgilio A, Pirone L, Vellecco V, Bucci M, Pedone E, Esposito V, Galeone A. Investigating the properties of TBA variants with twin thrombin binding domains. Sci Rep 2019; 9:9184. [PMID: 31235717 PMCID: PMC6591170 DOI: 10.1038/s41598-019-45526-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
In this paper, we report studies concerning thrombin binding aptamer (TBA) dimeric derivatives in which the 3′-ends of two TBA sequences have been joined by means of linkers containing adenosine or thymidine residues and/or a glycerol moiety. CD and electrophoretic investigations indicate that all modified aptamers are able to form G-quadruplex domains resembling that of the parent TBA structure. However, isothermal titration calorimetry measurements of the aptamer/thrombin interaction point to different affinities to the target protein, depending on the type of linker. Consistently, the best ligands for thrombin show anticoagulant activities higher than TBA. Interestingly, two dimeric aptamers with the most promising properties also show far higher resistances in biological environment than TBA.
Collapse
Affiliation(s)
- Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Luciano Pirone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Valentina Vellecco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Mariarosaria Bucci
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
9
|
Virgilio A, Russo A, Amato T, Russo G, Mayol L, Esposito V, Galeone A. Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Res 2017; 45:8156-8166. [PMID: 28666330 PMCID: PMC5737522 DOI: 10.1093/nar/gkx566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3′-3′ and two 5′-5′ inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3′-TGnT-5′-5′-TGnT-3′-3′-TGnT-5′-5′-TGnT-3′ in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annapina Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
10
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
11
|
Oliviero G, D'Errico S, Pinto B, Nici F, Dardano P, Rea I, De Stefano L, Mayol L, Piccialli G, Borbone N. Self-Assembly of G-Rich Oligonucleotides Incorporating a 3'-3' Inversion of Polarity Site: A New Route Towards G-Wire DNA Nanostructures. ChemistryOpen 2017; 6:599-605. [PMID: 28794955 PMCID: PMC5542749 DOI: 10.1002/open.201700024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
Obtaining DNA nanostructures with potential applications in drug discovery, diagnostics, and electronics in a simple and affordable way represents one of the hottest topics in nanotechnological and medical sciences. Herein, we report a novel strategy to obtain structurally homogeneous DNA G-wire nanostructures of known length, starting from the short unmodified G-rich oligonucleotide d(5'-CGGT-3'-3'-GGC-5') (1) incorporating a 3'-3' inversion of polarity site. The reported approach allowed us to obtain long G-wire assemblies through 5'-5' π-π stacking interactions in between the tetramolecular G-quadruplex building blocks that form when 1 is annealed in the presence of potassium ions. Our results expand the repertoire of synthetic methodologies to obtain new tailored DNA G-wire nanostructures.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies Via S. Pansini 5 80131 Napoli Italy
| | - Stefano D'Errico
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Brunella Pinto
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Fabrizia Nici
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Principia Dardano
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Luciano Mayol
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Gennaro Piccialli
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Nicola Borbone
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| |
Collapse
|
12
|
Zhou J, Amrane S, Rosu F, Salgado GF, Bian Y, Tateishi-Karimata H, Largy E, Korkut DN, Bourdoncle A, Miyoshi D, Zhang J, Ju H, Wang W, Sugimoto N, Gabelica V, Mergny JL. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J Am Chem Soc 2017; 139:7768-7779. [PMID: 28523907 DOI: 10.1021/jacs.7b00648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand the role of ribose G-quartets and how they affect the properties of G-quadruplex structures, we studied three systems in which one, two, three, or four deoxyribose G-quartets were substituted with ribose G-quartets. These systems were a parallel DNA intramolecular G-quadruplex, d(TTGGGTGGGTTGGGTGGGTT), and two tetramolecular G-quadruplexes, d(TGGGT) and d(TGGGGT). Thermal denaturation experiments revealed that ribose G-quartets have position-dependent and cumulative effects on G-quadruplex stability. An unexpected destabilization was observed when rG quartets were presented at the 5'-end of the G stack. This observation challenges the general belief that RNA residues stabilize G-quadruplexes. Furthermore, in contrast to past proposals, hydration is not the main factor determining the stability of our RNA/DNA chimeric G-quadruplexes. Interestingly, the presence of rG residues in a central G-quartet facilitated the formation of additional tetramolecular G-quadruplex topologies showing positive circular dichroism signals at 295 nm. 2D NMR analysis of the tetramolecular TGgGGT (lowercase letter indicates ribose) indicates that Gs in the 5'-most G-quartet adopt the syn conformation. These analyses highlight several new aspects of the role of ribose G-quartets on G-quadruplex structure and stability, and demonstrate that the positions of ribose residues are critical for tuning G-quadruplex properties.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China.,Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Samir Amrane
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux , CNRS UMS 3033, INSERM US001, IECB, F-33600 Pessac, France
| | - Gilmar F Salgado
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Eric Largy
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Dursun Nizam Korkut
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Daisuke Miyoshi
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jian Zhang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Valérie Gabelica
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
13
|
Pinto B, Rusciano G, D'Errico S, Borbone N, Sasso A, Piccialli V, Mayol L, Oliviero G, Piccialli G. Synthesis and label free characterization of a bimolecular PNA homo quadruplex. Biochim Biophys Acta Gen Subj 2016; 1861:1222-1228. [PMID: 27913190 DOI: 10.1016/j.bbagen.2016.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND G-quadruplex DNA is involved in many physiological and pathological processes. Both clinical and experimental studies on DNA G-quadruplexes are slowed down by their enzymatic instability. In this frame, more stable chemically modified analogs are needed. METHODS The bis-end-linked-(gggt)2 PNA molecule (BEL-PNA) was synthesized using in solution and solid phase synthetic approaches. Quadruplex formation was assessed by circular dichroism (CD) and surface enhanced Raman scattering (SERS). RESULTS An unprecedented bimolecular PNA homo quadruplex is here reported. To achieve this goal, we developed a bifunctional linker that once functionalized with gggt PNA strands and annealed in K+ buffer allowed the obtainment of a PNA homo quadruplex. The identification of the strong SERS band at ~1481cm-1, attributable to vibrations involving the quadruplex diagnostic Hoogsteen type hydrogen bonds, confirmed the formation of the PNA homo quadruplex. CONCLUSIONS By tethering two G-rich PNA strands to the two ends of a suitable bifunctional linker it is possible to obtain bimolecular PNA homo quadruplexes after annealing in K+-containing buffers. The formation of such CD-unfriendly complexes can be monitored, even at low concentrations, by using the SERS technique. GENERAL SIGNIFICANCE Given the importance of DNA G-quadruplexes in medicine and nanotechnology, the obtainment of G-quadruplex analogs provided with enhanced enzymatic stability, and their monitoring by highly sensitive label-free techniques are of the highest importance. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Brunella Pinto
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Giulia Rusciano
- Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Antonio Sasso
- Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy.
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; CNR, Institute of Protein Biochemistry, 80131 Napoli, Italy.
| |
Collapse
|
14
|
Esposito V, Russo A, Amato T, Varra M, Vellecco V, Bucci M, Russo G, Virgilio A, Galeone A. Backbone modified TBA analogues endowed with antiproliferative activity. Biochim Biophys Acta Gen Subj 2016; 1861:1213-1221. [PMID: 27663232 DOI: 10.1016/j.bbagen.2016.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. METHODS Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. RESULTS CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. CONCLUSIONS A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. GENERAL SIGNIFICANCE Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Teresa Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
15
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
16
|
Unusual Chair-Like G-Quadruplex Structures: Heterochiral TBA Analogues Containing Inversion of Polarity Sites. J CHEM-NY 2015. [DOI: 10.1155/2015/473051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochiral oligodeoxynucleotides based on the thrombin binding aptamer sequence, namely, 5′gg3′-3′TT5′-5′ggtgtgg3′-3′TT5′-5′gg3′ (H1), 5′gg3′-3′TT5′-5′gg3′-3′TGT5′-5′gg3′-3′TT5′-5′gg3′ (H2), and 5′gGTTGgtgtgGTTGg3′ (H3), where lower case letters indicate L-residues, have been investigated in their ability to fold in G-quadruplex structures through a combination of gel electrophoresis, circular dichroism, and UV spectroscopy techniques. InH1andH2inversions of polarity sites have been introduced to control the strand direction in the loop regions. Collected data suggest that all modified sequences are able to fold in chair-like G-quadruplexes mimicking the originalTBAstructure.
Collapse
|
17
|
Esposito V, Scuotto M, Capuozzo A, Santamaria R, Varra M, Mayol L, Virgilio A, Galeone A. A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org Biomol Chem 2014; 12:8840-3. [PMID: 25296283 DOI: 10.1039/c4ob01475h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradation of nucleic acids in biological environments is the major drawback of the therapeutic use of aptamers. Among the approaches used to circumvent this negative aspect, the introduction of 3'-3' inversion of polarity sites at the sequence 3'-end has successfully been proposed. However, the introduction of inversion of polarity at the ends of the sequence has never been exploited for G-quadruplex forming aptamers. In this communication we describe CD, UV, electrophoretic and biochemical investigations concerning thrombin binding aptamer analogues containing one or two inversions of polarity sites at the oligonucleotide ends. Data indicate that, in some cases, this straightforward chemical modification is able to improve, at the same time, the thermal stability, affinity to thrombin and nuclease resistance in biological environments, thus suggesting its general application as a post-SELEX modification also for other therapeutically promising aptamers adopting G-quadruplex structures.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Šket P, Korbar T, Plavec J. Influence of 3′–3′ inversion of polarity site within d(TGGGGT) on inter quartet cation binding. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.06.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Virgilio A, Esposito V, Mayol L, Galeone A. More than one non-canonical phosphodiester bond in the G-tract: formation of unusual parallel G-quadruplex structures. Org Biomol Chem 2013; 12:534-40. [PMID: 24287516 DOI: 10.1039/c3ob41712c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report an investigation, based on NMR and CD spectroscopic and electrophoretic techniques, of 5'TGGGGT3' analogues containing two or three 3'-3' or 5'-5' inversion sites in the G-run, namely 5'TG3'-3'G5'-5'GGT3' (Q350), 5'TG3'-3'GG5'-5'GT3' (Q305), 5'TGG3'-3'G5'-5'GT3' (Q035), 5'TG3'-3'G5'-5'G3'-3'GT5' (Q353) and 3'TG5'-5'G3'-3'G5'-5'GT3' (Q535). Although the sequences investigated contain either no or only one natural 3'-5' linkage in the G-tract, all modified oligodeoxyribonucleotides (ODNs) have been shown to form stable tetramolecular quadruplex structures. The ability of the 3'-3' or 5'-5' inversion sites to affect the glycosidic conformation of guanosines and, consequently, base stacking, has also been investigated. The results of this study allow us to propose some generalizations concerning strand arrangements and the glycosidic conformational preference of residues adjacent to inverted polarity sites. These rules could be of general interest in the design of modified quadruplex structures, in view of their application as G-wires and modified aptamers.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy.
| | | | | | | |
Collapse
|
20
|
Zhou J, Abramov M, Liu F, Amrane S, Bourdoncle A, Herdewijn P, Mergny JL. Effects of six-membered carbohydrate rings on structure, stability, and kinetics of G-quadruplexes. Chemistry 2013; 19:14719-25. [PMID: 24027098 DOI: 10.1002/chem.201301743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/24/2013] [Indexed: 12/13/2022]
Abstract
We have evaluated the conformational, thermal, and kinetic properties of d(TGGGGT) analogues with one or five of the ribose nucleotides replaced with the carbohydrate residues hexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA), or altritol nucleic acid (ANA). All of the modified oligonucleotides formed G-quadruplexes, but substitution with the six-membered rings resulted in a mixture of G-quadruplex structures. UV and CD melting analyses showed that the structure formed by d(TGGGGT) modified with HNA was stabilized whereas that modified with CeNA was destabilized, relative to the structure formed by the unmodified oligonucleotide. Substitution at the fourth base of the G-tract with ANA resulted in a greater stabilization effect than substitution at the first G residue; substitution with five ANA residues resulted in significant stabilization of the G-quadruplex. A single substitution with CeNA at the first base of the G-tract or five substitutions with HNA resulted in striking deceleration or acceleration of G-quadruplex formation, respectively. Our results shed light on the effect of the sugar moiety on the properties of G-quadruplex structures.
Collapse
Affiliation(s)
- Jun Zhou
- Univ. Bordeaux, ARNA Laboratory, 33000 Bordeaux (France); INSERM, U869, IECB, 33600 Pessac (France), Fax: (+33) 5-4000-3004
| | | | | | | | | | | | | |
Collapse
|
21
|
Virgilio A, Esposito V, Mangoni A, Mayol L, Galeone A. A novel equilibrium relating to the helix handedness in G-quadruplexes formed by heterochiral oligonucleotides with an inversion of polarity site. Chem Commun (Camb) 2013; 49:7935-7. [PMID: 23900626 DOI: 10.1039/c3cc44607g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Investigations of heterochiral oligodeoxynucleotides 5'-TD1GD2GD3-3'-3'-GL3GL2TL1-5' (L33) and 3'-TD1GD2GD3-5'-5'-GL3GL2TL1-3' (L55) forming quadruplex structures are reported. Data indicate the presence of enantiomeric left- and right-handed quadruplex helices. In the case of L55, NMR experiments point to an unusual equilibrium between them.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy.
| | | | | | | | | |
Collapse
|
22
|
Chen SB, Shi QX, Peng D, Huang SY, Ou TM, Li D, Tan JH, Gu LQ, Huang ZS. The role of positive charges on G-quadruplex binding small molecules: learning from bisaryldiketene derivatives. Biochim Biophys Acta Gen Subj 2013; 1830:5006-13. [PMID: 23880070 DOI: 10.1016/j.bbagen.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND G-quadruplexes are promising therapeutic targets for small molecules. In general, the introduction of steady positive charges through the in situ alkylation of nitrogen atoms within potential G-quadruplex ligands can significantly improve their quadruplex binding and stabilization abilities. However, our previous studies on bisaryldiketene derivatives showed that the derivative M4, whose central piperidone moiety is quaternized, exhibits a poor G-quadruplex stabilization ability. METHODS To clarify this unusual finding, CD, ITC, UV and NMR analyses were performed to determine the binding behaviors of M4 and its non-quaternized analog M2 to G-quadruplex DNA [d(TGGGT)]4. Molecular modeling approaches were also employed to help illustrate ligand-quadruplex DNA interactions. RESULTS The CD melting and ITC analyses revealed that M2 exhibited much stronger stabilization and binding abilities to [d(TGGGT)]4 compared to M4. Moreover, the CD and ITC analyses in combination with UV, NMR and MD simulations revealed that M2 tended to be end-stacked on the G-quartet, whereas M4 tended to be bound in the groove region. Analysis of the electrostatic potential showed that the charged surface of M4 was more positive than that of M2 and other reported ligands that bind to the G-quadruplex via end-stacking interactions. CONCLUSIONS The results indicated that the different positively charged surfaces of M2 and M4 might be the key reason for their different binding modes. These different binding modes also lead to different binding affinities and stabilization abilities for [d(TGGGT)]4. GENERAL SIGNIFICANCE These results provide new clues for the rational design of G-quadruplex-binding small molecules with steady positive charges.
Collapse
Affiliation(s)
- Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
24
|
Le HT, Miller MC, Buscaglia R, Dean WL, Holt PA, Chaires JB, Trent JO. Not all G-quadruplexes are created equally: an investigation of the structural polymorphism of the c-Myc G-quadruplex-forming sequence and its interaction with the porphyrin TMPyP4. Org Biomol Chem 2012; 10:9393-404. [PMID: 23108607 PMCID: PMC3501587 DOI: 10.1039/c2ob26504d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G-quadruplexes, DNA tertiary structures highly localized to functionally important sites within the human genome, have emerged as important new drug targets. The putative G-quadruplex-forming sequence (Pu27) in the NHE-III(1) promoter region of the c-Myc gene is of particular interest as stabilization of this G-quadruplex with TMPyP4 has been shown to repress c-Myc transcription. In this study, we examine the Pu27 G-quadruplex-forming sequence and its interaction with TMPyP4. We report that the Pu27 sequence exists as a heterogeneous mixture of monomeric and higher-order G-quadruplex species in vitro and that this mixture can be partially resolved by size exclusion chromatography (SEC) separation. Within this ensemble of configurations, the equilibrium can be altered by modifying the buffer composition, annealing procedure, and dialysis protocol thereby affecting the distribution of G-quadruplex species formed. TMPyP4 was found to bind preferentially to higher-order G-quadruplex species suggesting the possibility of stabilization of the junctions of the c-Myc G-quadruplex multimers by porphyrin end-stacking. We also examined four modified c-Myc sequences that have been previously reported and found a narrower distribution of G-quadruplex configurations compared to the parent Pu27 sequence. We could not definitively conclude whether these G-quadruplex structures were selected from the original ensemble or if they are new G-quadruplex structures. Since these sequences differ considerably from the wild-type promoter sequence, it is unclear whether their structures have any actual biological relevance. Additional studies are needed to examine how the polymorphic nature of G-quadruplexes affects the interpretation of in vitro data for c-Myc and other G-quadruplexes. The findings reported here demonstrate that experimental conditions contribute significantly to G-quadruplex formation and should be carefully considered, controlled, and reported in detail.
Collapse
Affiliation(s)
- Huy T. Le
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - M. Clarke Miller
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
| | - Robert Buscaglia
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - William L. Dean
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| | - Patrick A. Holt
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - Jonathan B. Chaires
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| | - John O. Trent
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| |
Collapse
|
25
|
Šket P, Virgilio A, Esposito V, Galeone A, Plavec J. Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Res 2012; 40:11047-57. [PMID: 22977177 PMCID: PMC3510487 DOI: 10.1093/nar/gks851] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG3T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G2T3′), d(3′T5′-5′G3T3′) and d(5′TG3′-3′G2T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of 15 ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG3T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures.
Collapse
Affiliation(s)
- Primoz Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | | | | | | | | |
Collapse
|
26
|
Abstract
Circular dichroism (CD) is a widespread technique for studying the polymorphism of G-quadruplexes. In this chapter the CD spectral features characteristic of different folding topologies of G4-DNA are analyzed in terms of the sequence of the syn or anti glycosidic bond angle (GBA) within a quadruplex stem. Depending on the GBA sequence, the chiral disposition of two stacked guanines, adjacent along a strand, is different and this leads to a predictable contribution to the overall CD spectrum. The CD spectra of a series of G-quadruplexes, chosen as prototypal of the most common strand folding, are illustrated. The validity and the prediction power of the approach is corroborated by the analysis of CD spectra of structurally modified G4-DNA either with chemically modified guanines or polarity inversion site (5'-5' or 3'-3') along the strands or additional nucleobases contributing to the stacking.
Collapse
|
27
|
|
28
|
Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org Biomol Chem 2010; 8:2683-92. [PMID: 20440429 DOI: 10.1039/c003428b] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-quadruplex DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen hydrogen-bonding arrangement. In the last decade the number of publications where CD spectroscopy has been used to study G4-DNAs, is extremely high. However, with very few exceptions, these investigations use an empirical interpretation of CD spectra. In this interpretation two basic types of CD spectra have been associated to a single specific difference in the features of the strand folding, i.e. the relative orientation of the strands, "parallel" (all strands have the same 5' to 3' orientation) or "antiparallel". Different examples taken from the literature where the empirical interpretation is not followed or is meaningless are presented and discussed. Furthermore, the case of quadruplexes formed by monomeric guanosine derivatives, where there is no strand connecting the adjacent quartets and the definition parallel/antiparallel strands cannot apply, will be discussed. The different spectral features observed for different G-quadruplexes is rationalised in terms of chromophores responsible for the electronic transitions. A simplified exciton coupling approach or more refined QM calculations allow to interpret the different CD features in terms of different stacking orientation (head-to-tail, head-to-head, tail-to-tail) between adjacent G-quartets irrespectively of the relative orientation of the stands (parallel/antiparallel).
Collapse
Affiliation(s)
- Stefano Masiero
- Alma Mater Studiorum-Università di Bologna, Dipartimento di Chimica Organica A. Mangini, via San Giacomo 11, I-40126, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|