1
|
Liang L, Liu Z, Chen J, Zha Q, Zhou Y, Li J, Hu Y, Chen X, Zhang T, Zhang N. Design and synthesis of Thieno[3, 2-b]pyridinone derivatives exhibiting potent activities against Mycobacterium tuberculosis in vivo by targeting Enoyl-ACP reductase. Eur J Med Chem 2024; 279:116806. [PMID: 39276583 DOI: 10.1016/j.ejmech.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
In this study, a series of novel thieno [3, 2-b]pyridinone derivatives were designed and synthesized using a scaffold hopping strategy. Six compounds showed potent anti-mycobacterial activity (minimum inhibitory concentration (MIC) ≤ 1 μg/mL) against Mycobacterium tuberculosis (Mtb) UAlRa. Compound 6c displayed good activity against Mtb UAlRv (MIC = 0.5-1 μg/mL). Compounds 6c and 6i also showed activity against Mtb UAlRa in macrophages and exhibited low cytotoxicity against LO-2 cells. The selected compounds displayed a narrow antibacterial spectrum, with no activity against representative Gram-positive, Gram-negative bacteria, as well as fungi. Furthermore, compound 6c demonstrated favorable oral pharmacokinetic properties with a T1/2 value of 47.99 h and exhibited good in vivo activity in an acute mouse model of tuberculosis (TB). The target of compound 6c was identified as a NADH-dependent enoyl-acyl carrier protein reductase (InhA) by genome sequencing of spontaneously compound 6c-resistant Mtb mutants, indicating that compound 6c may not require activation and can directly target InhA. In vitro antimicrobial assays against a recombinant M. smegmatis overexpressing the Mtb-InhA, along with InhA inhibition assays, confirmed that InhA is the target of thieno [3, 2-b]pyridinone derivatives. Overall, this study identified thieno [3, 2-b]pyridinone scaffold as a novel chemotype that is promising for the development of anti-TB agents.
Collapse
Affiliation(s)
- Lihong Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jie Chen
- Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, 314001, China
| | - Qin Zha
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Yihuan Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Guangzhou National Laboratory, Guangzhou, 510005, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Niuniu Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
2
|
Talaat N, Abass M, Mohamed Hassanin H, Abdel-Kader D. Synthesis and anticancer activity of oxazolo and oxazinoquinolinone derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nancy Talaat
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohamed Abass
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | | | - Dalia Abdel-Kader
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
A green and effective route leading to antiradical agents with 3-arylmethyl 4-hydroxyquinolin-2(1H)-one moiety. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Synthesis of polyfluorinated 4‑hydroxyquinolin-2(1H)‑ones based on the cyclization of 2-alkynylanilines with carbon dioxide. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Fuchigami T, Fujimoto N, Haradahira T, Nojiri Y, Okauchi T, Maeda J, Suhara T, Yamamoto F, Nakayama M, Maeda M, Mukai T. Synthesis and characterization of 11 C-labeled benzyl amidine derivatives as PET radioligands for GluN2B subunit of the NMDA receptors. J Labelled Comp Radiopharm 2018; 61:1095-1105. [PMID: 30375667 DOI: 10.1002/jlcr.3691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/10/2022]
Abstract
GluN2B-containing NMDA receptors (NMDARs) play fundamental roles in learning and memory, although they are also associated with various brain disorders. In this study, we synthesized and evaluated three 11 C-labeled N-benzyl amidine derivatives 2-[11 C]methoxybenzyl) cinnamamidine ([11 C]CBA), N-(2-[11 C]methoxybenzyl)-2-naphthamidine ([11 C]NBA), and N-(2-[11 C]methoxybenzyl)quinoline-3-carboxamidine ([11 C]QBA) as PET radioligands for these receptors. The 11 C-benzyl amidines were synthesized via conventional methylation of corresponding des-methyl precursors with [11 C]CH3 I. In vitro binding characteristics were examined in brain sagittal sections using various GluN2B modulators and off-target ligands. Further, in vivo brain distribution studies were performed in normal mice. The 11 C-labeled benzyl amidines showed high-specific binding to the GluN2B subunit at in vitro. In particular, the quinoline derivative [11 C]QBA had the best binding properties in terms of high-brain localization to GluN2B-rich regions and specificity to the GluN2B subunit. Conversely, these 11 C-radioligands showed the brain distributions were inconsistent with GluN2B expression in biodistribution experiments. The majority of the radiolabeled compounds were identified as metabolized forms of which amido derivatives seemed to be the major species. Although these 11 C-ligands had high-specific binding to the GluN2B subunit, significant improvement in metabolic stability is necessary for successful positron emission tomography (PET) imaging of the GluN2B subunit of NMDARs.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriko Fujimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Terushi Haradahira
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Yumiko Nojiri
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Okauchi
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Fumihiko Yamamoto
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
6
|
Ghoneim AA, Morsy NM. Synthesis and structure elucidation of some new azo dye from hydroxyquinolin-2(1H)-one derivatives and their antimicrobial evaluation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1445-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Hartrampf FW, Barber DM, Gottschling K, Leippe P, Hollmann M, Trauner D. Development of a photoswitchable antagonist of NMDA receptors. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal 2015; 2015:716514. [PMID: 25874256 PMCID: PMC4385697 DOI: 10.1155/2015/716514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/29/2014] [Indexed: 01/16/2023] Open
Abstract
l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs.
Collapse
|
9
|
Yahyazadeh A, Yousefi H. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 8-chloro-4-hydroxyl-2-quinolone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:696-701. [PMID: 24140457 DOI: 10.1016/j.saa.2013.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
In this study, 8-chloro-4-hydroxyl-2-quinolone was synthesized from cyclocondensation of corresponding dianilide and subsequently used as a potent coupling component with some diazotized heterocyclic amines. These compounds were characterized by UV-vis, FT-IR, (1)H NMR spectroscopic techniques and elemental analysis. Absorption spectra of these dyes were measured in six polar solvents and discussed with respect to the nature of solvents and substituted groups. The effects of acid, base, temperature and concentration on the visible absorption spectra of the dyes were reported. In addition, the antimicrobial activity of the dyes was explored in detail.
Collapse
Affiliation(s)
- Asieh Yahyazadeh
- Department of Chemistry, Faculty of Sciences University of Guilan, Rasht, Iran.
| | | |
Collapse
|
10
|
Moradi Rufchahi E, Pouramir H, Yazdanbakhsh M, Yousefi H, Bagheri M, Rassa M. Novel azo dyes derived from 8-methyl-4-hydroxyl-2-quinolone: Synthesis, UV–vis studies and biological activity. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD. PET and SPECT tracers for glutamate receptors. Drug Discov Today 2012; 18:173-84. [PMID: 23092894 DOI: 10.1016/j.drudis.2012.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
Radioligands for PET imaging of glutamate receptors will have the potential for studying neurological and neuropsychiatric disorders and their diagnosis and therapeutic intervention. Glutamate is the major excitatory neurotransmitter in the brain and is implicated in the pathophysiology of many neurodegenerative and neuropsychiatric disorders. Glutamate and its receptors are potential targets in the treatment of these disorders. Glutamate signaling is mediated through ionotropic and metabotropic receptors. The abundant concentration of these receptors can facilitate their in vivo quantification using positron emission tomography (PET). Glutamate receptors are a potentially important set of targets for monitoring disease progression, for evaluating the effect of therapy and for new treatment development based on the quantification of receptor occupancy. Here, we review the PET and single-photon emission computed tomography (SPECT) radioligands that have been developed for imaging glutamate receptors in living brain.
Collapse
Affiliation(s)
- Vattoly J Majo
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
12
|
Toum J, Moquette A, Lamotte Y, Mirguet O. A simple and efficient one-step synthesis of 3-substituted-4-hydroxyquinolin-2-one derivatives. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.01.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Fuchigami T, Yamaguchi H, Ogawa M, Biao L, Nakayama M, Haratake M, Magata Y. Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor. Bioorg Med Chem 2010; 18:7497-506. [DOI: 10.1016/j.bmc.2010.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|