1
|
Nguyen HT, Pham-The H, Tuan AN, Thu HNT, Thi TAD, Le-Nhat-Thuy G, Thi PH, Thi QGN, Van Nguyen T. Improved synthesis, molecular modeling and anti-inflammatory activity of new fluorinated dihydrofurano-naphthoquinone compounds. Bioorg Med Chem Lett 2024; 104:129714. [PMID: 38522589 DOI: 10.1016/j.bmcl.2024.129714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
A series of new fluorinated dihydrofurano-napthoquinone compounds were sucessfully synthesized in good yields using microwave-assisted multi-component reactions of 2-hydroxy-1,4-naphthoquinone, fluorinated aromatic aldehydes, and pyridinium bromide. The products were fully characterized using spectroscopic techniques and evaluated for their anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Among 12 new compounds, compounds 8b, 8d, and 8e showed high potent NO inhibitory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values ranging from 1.54 to 3.92 µM. The levels of pro-inflammatory cytokines IL-1β and IL-6 in LPS-stimulated RAW264.7 macrophages were remarkably decreased after the application of 8b, 8d, 8e and 8k. Molecular docking simulations revealed structure-activity relationships of 8b, 8d, and 8e toward NO synthase, cyclooxygenase (COX-2 over COX-1), and prostaglandin E synthase-1 (mPGES-1). Further physicochemical and pharmacokinetic computations also demonstrated the drug-like characteristics of synthesized compounds. These findings demonstrated the importance of fluorinated dihydrofurano-napthoquinone moieties in the development of potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Hai Pham-The
- Department of Life Science, University of Science and Technology of Hanoi (USTH), VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Anh Nguyen Tuan
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Ha Nguyen Thi Thu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
2
|
Choura E, Elghali F, Bernard PJ, Msalbi D, Marco-Contelles J, Aifa S, Ismaili L, Chabchoub F. Benzochromenopyrimidines: Synthesis, Antiproliferative Activity against Colorectal Cancer and Physicochemical Properties. Molecules 2022; 27:molecules27227878. [PMID: 36431976 PMCID: PMC9694646 DOI: 10.3390/molecules27227878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Ten new differently substituted 3-benzyl-5-aryl-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidin-4,6,11-triones 3 were synthesized by a simple and cost-efficient procedure in a one-pot, three-component reaction from readily available ethyl 2-amino-4-aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene-3-carboxylates, benzylamine and triethyl orthoformate under solvent- and catalyst-free conditions. All the new compounds were screened for their antiproliferative activity against two colorectal-cancer-cell lines. The results showed that the compounds 3-benzyl-5-phenyl-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11-trione (3a) and 3-benzyl-5-(3-hydroxyphenyl)-3,5-dihydro-4H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11-trione (3g) exhibited the most potent balanced inhibitory activity against human LoVo and HCT-116 cancer cells.
Collapse
Affiliation(s)
- Emna Choura
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, BP 802, Sfax 3000, Tunisia
| | - Fares Elghali
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - Paul J. Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université Franche-Comté, UFR Santé, 19, Rue Ambroise Paré, F-25000 Besançon, France
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 28006 Madrid, Spain
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour, Road Km 6, BP 1177, Sfax 3018, Tunisia
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université Franche-Comté, UFR Santé, 19, Rue Ambroise Paré, F-25000 Besançon, France
- Correspondence: (L.I.); (F.C.)
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, BP 802, Sfax 3000, Tunisia
- Correspondence: (L.I.); (F.C.)
| |
Collapse
|
3
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
4
|
Thanh NH, Phuong HT, Giang LNT, Giang NTQ, Ha NTT, Anh DTT, Cuong VD, Van Tuyen N, Van Kiem P. 4-(Dimethylamino)pyridine as an Efficient Catalyst for One-Pot Synthesis of 1,4-Pyranonaphthoquinone Derivatives viaMicrowave-Assisted Sequential Three Component Reaction in Green Solvent. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211053951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Novel 1,4-pyranonaphthoquinone derivatives were successfully synthesized via the microwave-assisted three-component reaction of 1,4-naphthoquinone, malononitrile, and various arylaldehydes in ethanol in the presence of 4-(dimethylamino)pyridine (DMAP) as a catalyst, and subsequently evaluated in terms of their antimicrobial and antifungal activities. This synthetic procedure has the notable advantages of environmental friendliness, short reaction time, good yield, and convenient operation.
Collapse
Affiliation(s)
- Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Hoang Thi Phuong
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Le Nhat Thuy Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Quynh Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Dang Thi Tuyet Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Vu Duc Cuong
- Viet Tri University of Industry, Viet Tri, Phu Tho, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
5
|
Zhang L, Fasoyin OE, Molnár I, Xu Y. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep 2020; 37:1181-1206. [PMID: 32211639 PMCID: PMC7529686 DOI: 10.1039/c9np00065h] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| |
Collapse
|
6
|
Xie F, Luan XY, Gao Y, Xu K, Lou HX. Cytotoxic Heptaketides from the Endolichenic Fungus Ulospora bilgramii. JOURNAL OF NATURAL PRODUCTS 2020; 83:1623-1633. [PMID: 32394716 DOI: 10.1021/acs.jnatprod.0c00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Eleven new metabolites including nine heptaketides, ulosporin A-G (1a-7b), one diphenyl compound, ulophenol (8), and one spirobisnaphthalene, palmarumycin P5 (9), were isolated from the endolichenic fungus Ulospora bilgramii, which inhabits the lichen Umbilicaria sp. The structures of these compounds were elucidated based on comprehensive analysis of their spectroscopic, electronic circular dichroism (ECD), and single-crystal X-ray diffraction data. Ulosporin G (7) inhibited the growth of the human cancer cell lines A549, MCF-7, and KB with IC50 values of 1.3, 1.3, and 3.0 μM, respectively. Additionally, it induced A549 cell apoptosis through G0/G1 cell cycle arrest caused by DNA damage.
Collapse
Affiliation(s)
- Fei Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan250012, People's Republic of China
| | - Xiao-Yi Luan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yun Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Ke Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| |
Collapse
|
7
|
Abstract
Xiakemycin A (XKA), a new antibiotic in the pyranonaphthoquinone family, shows antitumor activity. However, the type of cell death induced by XKA remains elusive. In this study, we aim to investigate the type of death induced by XKA in hepatic cancer.The apoptotic features, such as chromatic agglutination, reactive oxygen species generation and membrane potential of mitochondria, in HepG2 cells treated by XKA were measured by Hoechst 33342 staining and flow cytometry. Apoptosis of HepG2 cells treated with XKA was determined by Annexin V-FITC/propidium iodide double staining and Western blot analysis, respectively.XKA had a significant dose-dependent elevation of chromatic agglutination, reactive oxygen species generation, Annexin V and propidium iodide staining, decrease of membrane potential. Meanwhile, in apoptotic HepG2 cells induced by XKA, robust increment was noticed in p53 expression, cleavage of PARP, caspase-3, and caspase-9.XKA showed potent inhibitory effects on the proliferation of HepG2 cells. Such phenomenon may be related to activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Chuan Chen
- Faculty of Basic Medical Sciences, Jiujiang University, Jiujiang
| | - Zhu Han
- Department of Biological and Chemical Engineering, Jingdezhen University, Jingdezhen
| | - Minjie Yang
- Faculty of Nursing, Jiujiang University, Jiujiang
| | - Zhongke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, and Chinese Academy of Medical Sciences
| | - Xiuyuan Ou
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Huang R, Jing X, Huang X, Pan Y, Fang Y, Liang G, Liao Z, Wang H, Chen Z, Zhang Y. Bifunctional Naphthoquinone Aromatic Amide-Oxime Derivatives Exert Combined Immunotherapeutic and Antitumor Effects through Simultaneous Targeting of Indoleamine-2,3-dioxygenase and Signal Transducer and Activator of Transcription 3. J Med Chem 2020; 63:1544-1563. [PMID: 31999451 DOI: 10.1021/acs.jmedchem.9b01386] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription 3 (STAT3) are important targets in the tumor microenvironment for cancer therapy. In the present study, a set of naphthoquinone aromatic amide-oxime derivatives were designed, which stimulated the immune response via IDO1 inhibition and simultaneously displayed powerful antitumor activity against three selected cancer cell lines through suppressing STAT3 signaling. The representative compound 8u bound effectively to IDO1, with greater inhibitory activity relative to the commercial IDO1 inhibitor 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L) in addition to the efficient suppression of nuclear translocation of STAT3. Consistently, in vivo assays demonstrated a higher antiproliferative activity of compound 8u in both wild-type B16-F10 isograft tumors and an athymic HepG2 xenograft model relative to 1-methyl-l-tryptophan (1-MT) and doxorubicin (DOX). This bifunctional compound with dual immunotherapeutic and anticancer efficacy may represent a new generation of highly efficacious drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Rizhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China.,School of Pharmacy , Guilin Medical University , Guilin 541004 , China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiaoteng Jing
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yingming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Yilin Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Guibin Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Zhenfeng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Ye Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China.,School of Pharmacy , Guilin Medical University , Guilin 541004 , China
| |
Collapse
|
9
|
Panthong K, Hongthong S, Kuhakarn C, Piyachaturawat P, Suksen K, Panthong A, Chiranthanut N, Kongsaeree P, Prabpai S, Nuntasaen N, Reutrakul V. Pyranonaphthoquinone and anthraquinone derivatives from Ventilago harmandiana and their potent anti-inflammatory activity. PHYTOCHEMISTRY 2020; 169:112182. [PMID: 31669820 DOI: 10.1016/j.phytochem.2019.112182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 05/22/2023]
Abstract
The chemical study on the heartwoods extract of Ventilago harmandiana (Rhamnaceae) resulted in the isolation of ten previously undescribed pyranonaphthoquinones (ventilanones A-J), an undescribed anthraquinone (ventilanone K), together with eight known anthraquinone derivatives. Their structures were elucidated by extensive analysis of their spectroscopic data. The absolute configuration of ventilanone A was established from single crystal X-ray crystallographic analysis of its p-bromobenzenesulfonate ester derivative using Cu Kα radiation. The absolute configurations of the other related compounds were identified by comparison of their ECD data with those of ventilanone A and related known compounds. Cytotoxic and anti-inflammatory activities of some of the isolated compounds were evaluated. Ventilanone A and ventilanone C exhibited moderate cytotoxicity against P-388 cell line. Ventilanone D exhibited significant anti-inflammatory activity while ventilanone A and ventilanone C showed moderate activity.
Collapse
Affiliation(s)
- Kanda Panthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Sakchai Hongthong
- Division of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, 24000, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ampai Panthong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Samran Prabpai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narong Nuntasaen
- The Forest Herbarium National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Naysmith BJ, Hume PA, Sperry J, Brimble MA. Pyranonaphthoquinones - isolation, biology and synthesis: an update. Nat Prod Rep 2017; 34:25-61. [PMID: 27759131 DOI: 10.1039/c6np00080k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2008 to 2015. A review on the isolation, biological activity and synthesis of pyranonaphthoquinone natural products from 2008-2015 is providedThis review discusses the isolation, biological activity and synthesis of pyranonaphthoquinone natural products, covering the years 2008-2015. The pyranonaphthoquinones are a group of metabolites sharing a common naphtho[2,3-c]pyran-5,10-dione ring system that have been isolated from a wide range of microorganisms, plants and insects. In addition to their synthetically challenging molecular structures, pyranonaphthoquinones exhibit a wide array of biological activity, including anti-bacterial, anti-fungal and anti-cancer properties. The therapeutic potential of these compounds has led to a dynamic interplay between total synthesis and biological evaluation.
Collapse
Affiliation(s)
- Briar J Naysmith
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Paul A Hume
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
11
|
5-Ethynylarylnaphthalimides as antitumor agents: Synthesis and biological evaluation. Bioorg Med Chem 2017; 25:1976-1983. [DOI: 10.1016/j.bmc.2017.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/18/2022]
|
12
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Hueso-Falcón I, Amesty Á, Anaissi-Afonso L, Lorenzo-Castrillejo I, Machín F, Estévez-Braun A. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors. Bioorg Med Chem Lett 2016; 27:484-489. [PMID: 28040393 DOI: 10.1016/j.bmcl.2016.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022]
Abstract
Based on previous Topoisomerase II docking studies of naphthoquinone derivatives, a series of naphthoquinone-coumarin conjugates was synthesized through a multicomponent reaction from aromatic aldehydes, 4-hydroxycoumarin and 2-hydroxynaphthoquinone. The hybrid structures were evaluated against the α isoform of human topoisomerase II (hTopoIIα), Escherichia coli DNA Gyrase and E. coli Topoisomerase I. All tested compounds inhibited the hTopoIIα-mediated relaxation of negatively supercoiled circular DNA in the low micromolar range. This inhibition was specific since neither DNA Gyrase nor Topoisomerase I were affected. Cleavage assays pointed out that naphthoquinone-coumarins act by catalytically inhibiting hTopoIIα. ATPase assays and molecular docking studies further pointed out that the mode of action is related to the hTopoIIα ATP-binding site.
Collapse
Affiliation(s)
- Idaira Hueso-Falcón
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain
| | - Laura Anaissi-Afonso
- Unidad de Investigación Hospital Universitario Nuestra Señora de La Candelaria, 38010 Tenerife, Spain
| | | | - Félix Machín
- Unidad de Investigación Hospital Universitario Nuestra Señora de La Candelaria, 38010 Tenerife, Spain.
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain.
| |
Collapse
|
14
|
Che Q, Tan H, Han X, Zhang X, Gu Q, Zhu T, Li D. Naquihexcin A, a S-Bridged Pyranonaphthoquinone Dimer Bearing an Unsaturated Hexuronic Acid Moiety from a Sponge-Derived Streptomyces sp. HDN-10-293. Org Lett 2016; 18:3358-61. [DOI: 10.1021/acs.orglett.6b01485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qian Che
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Hongsheng Tan
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Xiaoning Han
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Xiaomin Zhang
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Dehai Li
- Key Laboratory of Marine
Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| |
Collapse
|
15
|
Hassan NP, Naysmith BJ, Sperry J, Brimble MA. Formal synthesis of nanaomycin D via a Hauser–Kraus annulation using a chiral enone-lactone. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Synthesis and anticancer properties of new (dihydro)pyranonaphthoquinones and their epoxy analogs. Bioorg Med Chem Lett 2015; 25:3355-8. [DOI: 10.1016/j.bmcl.2015.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/17/2022]
|
17
|
Saepua S, Kornsakulkarn J, Choowong W, Supothina S, Thongpanchang C. Bioxanthracenes and monomeric analogues from insect pathogenic fungus Conoideocrella luteorostrata Zimm. BCC 31648. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Ramos-Pérez C, Lorenzo-Castrillejo I, Quevedo O, García-Luis J, Matos-Perdomo E, Medina-Coello C, Estévez-Braun A, Machín F. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Biochem Pharmacol 2014; 92:206-19. [DOI: 10.1016/j.bcp.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/15/2023]
|
19
|
Heapy AM, Patterson AV, Smaill JB, Jamieson SMF, Guise CP, Sperry J, Hume PA, Rathwell K, Brimble MA. Synthesis and cytotoxicity of pyranonaphthoquinone natural product analogues under bioreductive conditions. Bioorg Med Chem 2014; 21:7971-80. [PMID: 24436995 DOI: 10.1016/j.bmc.2013.09.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED We have synthesised a focused library of derivatives of natural products containing the pyranonaphthoquinone moiety including the first report of such a scaffold with an appended tetrazole functionality. Examples include kalafungin derivatives as well as analogues of nanaomycin and eleutherin. These compounds were assessed for cytotoxic activation by breast cancer cell lines engineered to express the prototypic human one- and two-electron quinone bioreductive enzymes, NADPH: cytochrome P450 oxidoreductase (POR) and NAD(P)H quinoneoxidoreductase 1 (NQO1; DT-diaphorase), respectively. Several compounds were observed to be cytotoxic at sub-micromolar level and a pattern of increased aerobic potency was observed in cells over expressing POR. A subset of analogues was assessed under anoxic conditions, where cytotoxicity was reduced, implicating redox cycling as a major mechanism of toxicity. The substrate specificity for reductive enzymes is relevant to the future design of bioreductive prodrugs to treat cancer.
Collapse
|
20
|
Limaye RA, Natu AD, Paradkar MV. Synthesis of Naturally Occurring Pyranonaphthoquinones: (±) 9-Demethoxyeleutherin, (±) 9-Demethoxyisoeleutherin, and Pentalongin via Nef Reaction. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.905600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rohan A. Limaye
- a Postgraduate and Research Centre, Department of Chemistry , MES Abasaheb Garware College , Pune , India
| | - Arun D. Natu
- a Postgraduate and Research Centre, Department of Chemistry , MES Abasaheb Garware College , Pune , India
| | - Madhusudan V. Paradkar
- a Postgraduate and Research Centre, Department of Chemistry , MES Abasaheb Garware College , Pune , India
| |
Collapse
|
21
|
Discovery of indeno[1,2- $$c$$ c ]quinoline derivatives as dual topoisomerases I/II inhibitors: Part 3. Mol Divers 2013; 17:781-799. [DOI: 10.1007/s11030-013-9475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
22
|
Pinho BR, Ferreres F, Valentão P, Andrade PB. Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. J Pharm Pharmacol 2013; 65:1681-700. [DOI: 10.1111/jphp.12081] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is the most common cause of dementia, being responsible for high healthcare costs and familial hardships. Despite the efforts of researchers, no treatment able to delay or stop AD progress exists. Currently, the available treatments are only symptomatic, cholinesterase inhibitors being the most widely used drugs. Here we describe several natural compounds with anticholinesterase (acetylcholinesterase and butyrylcholinesterase) activity and also some synthetic compounds whose structures are based on those of natural compounds.
Key findings
Galantamine and rivastigmine are two cholinesterase inhibitors used in therapeutics: galantamine is a natural alkaloid that was extracted for the first time from Galanthus nivalis L., while rivastigmine is a synthetic alkaloid, the structure of which is modelled on that of natural physostigmine. Alkaloids include a high number of compounds with anticholinesterases activity at the submicromolar range. Quinones and stilbenes are less well studied regarding cholinesterase inhibition, although some of them, such as sargaquinoic acid or (+)-α-viniferin, show promising activity. Among flavonoids, flavones and isoflavones are the most potent compounds. Xanthones and monoterpenes are generally weak cholinesterase inhibitors.
Summary
Nature is an almost endless source of bioactive compounds. Several natural compounds have anticholinesterase activity and others can be used as leader compounds for the synthesis of new drugs.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Patrícia Valentão
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Naysmith BJ, Brimble MA. Synthesis of the griseusin B framework via a one-pot annulation-methylation-double deprotection-spirocyclization sequence. Org Lett 2013; 15:2006-9. [PMID: 23560611 DOI: 10.1021/ol400686f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A highly convergent synthesis of the griseusin B scaffold is described. The key step involves an efficient one-pot Hauser-Kraus annulation-methylation-double deprotection-spirocyclization sequence that directly affords the target parent tetracyclic ring system.
Collapse
Affiliation(s)
- Briar J Naysmith
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | | |
Collapse
|
24
|
Cherblanc FL, Davidson RWM, Di Fruscia P, Srimongkolpithak N, Fuchter MJ. Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat Prod Rep 2013; 30:605-24. [DOI: 10.1039/c3np20097c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Bridewell DJA, Sperry J, Smith JR, Kosim-Satyaputra P, Ching LM, Jamie JF, Brimble MA. Natural Product-Inspired Pyranonaphthoquinone Inhibitors of Indoleamine 2,3-Dioxygenase-1 (IDO-1). Aust J Chem 2013. [DOI: 10.1071/ch12393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of pyranonaphthoquinone derivatives possessing structural features present in both natural products annulin B and exiguamine A have been shown to exhibit low micromolar inhibition of indoleamine 2,3-dioxygenase-1 (IDO-1). These inhibitors retain activity against the enzyme in a cellular context with an approximate one-log loss of dose potency against IDO-1 in cells. One particular analogue, triazole 8 shows good inhibition of IDO-1 along with little loss of cell viability at low drug concentrations. These results have extended the naphthoquinone series of novel IDO-1 inhibitors based on lead compounds from nature.
Collapse
|
26
|
Neves AP, Pereira MXG, Peterson EJ, Kipping R, Vargas MD, Silva FP, Carneiro JWM, Farrell NP. Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases and their platinum(II) complexes. J Inorg Biochem 2012. [PMID: 23186648 DOI: 10.1016/j.jinorgbio.2012.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several chlorido and amino Pt(2+) complexes of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases HL exhibiting moderate to high cytotoxicity against cancer cell lines were studied in order to investigate their modes of DNA binding, in vitro DNA strand breaks, mechanism of topoisomerase (Topo I) inhibition and cellular accumulation. DNA model base studies have shown that complex 1a [Pt(HL1)Cl(2)] was capable of binding covalently to 9-ethylguanine (9-EtG) and 5'-GMP. (1)H NMR and mass spectrometry studies have shown that both chlorides were substituted by 9-EtG ligands, whereas 5'-GMP was able to replace only one chlorido ligand, due to steric hindrance. The chlorido Pt(2+) complexes [Pt(HL)Cl(2)] highly accumulate in prostate (PC-3) and melanoma (MDA-MB-435) cell lines, being able to induce DNA strand breaks in vitro and inhibit Topo I by a catalytic mode. On the other hand, the free 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinones HL and the amino Pt(2+) complexes [Pt(L(-))(NH(3))(2)]NO(3) neither cause DNA strand breakage nor exhibit strong DNA interaction, nevertheless the latter were also found to be catalytic inhibitors of Topo I at 100μM. Thus, coordination of the Mannich bases HL to the "PtCl(2)" fragment substantially affects the chemical and biophysical properties of the pro-ligands, leading to an improvement of their DNA binding properties and generating compounds that cleave DNA and catalytically inhibit Topo I. Finally, the high cytotoxicity exhibited by the free (uncomplexed) 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinones might be associated with their decomposition in solution, which is not observed for the Pt(2+) complexes.
Collapse
Affiliation(s)
- Amanda P Neves
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ríos-Luci C, Bonifazi EL, León LG, Montero JC, Burton G, Pandiella A, Misico RI, Padrón JM. β-Lapachone analogs with enhanced antiproliferative activity. Eur J Med Chem 2012; 53:264-74. [DOI: 10.1016/j.ejmech.2012.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/30/2012] [Accepted: 04/07/2012] [Indexed: 12/23/2022]
|
28
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
29
|
Fernandes RA, Ingle AB, Chavan VP. Stereoselective synthesis of (−)-1-epi-ventiloquinone L and (+)-ventiloquinone L, the monomeric unit of cardinalin 3. Org Biomol Chem 2012; 10:4462-6. [DOI: 10.1039/c2ob25453k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Mbala BM, Jacobs J, Claes P, Mudogo V, De Kimpe N. Investigation towards an efficient synthesis of benzo[g]isoquinoline-1,5,10(2H)-triones. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Tseng CH, Tzeng CC, Yang CL, Lu PJ, Chen HL, Li HY, Chuang YC, Yang CN, Chen YL. Synthesis and Antiproliferative Evaluation of Certain Indeno[1,2-c]quinoline Derivatives. Part 2. J Med Chem 2010; 53:6164-79. [DOI: 10.1021/jm1005447] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chih-Hua Tseng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chiao-Li Yang
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng-Kung University, School of Medicine, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Hui-Ling Chen
- Institute of Clinical Medicine, National Cheng-Kung University, School of Medicine, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Hao-Yi Li
- Institute of Biotechnology, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung, Taiwan
| | - You-Chung Chuang
- Institute of Biotechnology, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung, Taiwan
| | - Chia-Ning Yang
- Institute of Biotechnology, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung, Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| |
Collapse
|