1
|
Bennett SA, Cobos SN, Mirzakandova M, Fallah M, Son E, Angelakakis G, Rana N, Hugais M, Torrente MP. Trichostatin A Relieves Growth Suppression and Restores Histone Acetylation at Specific Sites in a FUS ALS/FTD Yeast Model. Biochemistry 2021; 60:3671-3675. [PMID: 34788013 PMCID: PMC10041660 DOI: 10.1021/acs.biochem.1c00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that often occurs concurrently with frontotemporal dementia (FTD), another disorder involving progressive neuronal loss. ALS and FTD form a neurodegenerative continuum and share pathological and genetic features. Mutations in a multitude of genes have been linked to ALS/FTD, including FUS. The FUS protein aggregates and forms inclusions within affected neurons. However, the precise mechanisms connecting protein aggregation to neurotoxicity remain under intense investigation. Recent evidence points to the contribution of epigenetics to ALS/FTD. A main epigenetic mechanism involves the post-translational modification (PTM) of histone proteins. We have previously characterized the histone PTM landscape in a FUS ALS/FTD yeast model, finding a decreased level of acetylation on lysine residues 14 and 56 of histone H3. Here, we describe the first report of amelioration of disease phenotypes by controlling histone acetylation on specific modification sites. We show that inhibiting histone deacetylases, via treatment with trichostatin A, suppresses the toxicity associated with FUS overexpression in yeast by preserving the levels of H3K56ac and H3K14ac without affecting the expression or aggregation of FUS. Our data raise the novel hypothesis that the toxic effect of protein aggregation in neurodegeneration is related to its association with altered histone marks. Altogether, we demonstrate the ability to counter the repercussions of protein aggregation on cell survival by preventing specific histone modification changes. Our findings launch a novel mechanistic framework that will enable alternative therapeutic approaches for ALS/FTD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Seth A Bennett
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Samantha N Cobos
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | | | - Michel Fallah
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Elizaveta Son
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - George Angelakakis
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Navin Rana
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Muna Hugais
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Mariana P Torrente
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Liu J, Arabaciyan S, François JM, Capp JP. Bimodality of gene expression from yeast promoter can be instigated by DNA context, inducing conditions and strain background. FEMS Yeast Res 2018; 18:4978428. [PMID: 29684123 DOI: 10.1093/femsyr/foy047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Bimodality in gene expression is thought to provide a high phenotypic heterogeneity that can be favourable for adaptation or unfavourable notably in industrial processes that require stable and homogeneous properties. Whether this property is produced or suppressed in different conditions has been understudied. Here we identified tens of Saccharomyces cerevisiae genomic fragments conferring bimodal yEGFP expression on centromeric plasmid and studied some of these promoters in different DNA contexts, inducing conditions or strain backgrounds. First, we observed that the bimodal behaviour identified on plasmid is generally suppressed at the genomic level. Second, an inducible promoter such as the copper-regulated CUP1 promoter can produce bimodal expression in a time- and dose-dependent fashion. For a given copper sulphate concentration, a constant proportion of the subpopulation is induced and only the induction level of this subpopulation changed with induction duration, while for a same induction time, higher copper sulphate concentrations induced more cells at higher levels. Third, we showed that bimodality conferred by the CUP1 promoter in expression profile is strain background dependent, revealing epistasis in the generation of bimodality. The influence of these parameters on bimodality has to be taken into account when considering transgene expression for industrial microbial productions.
Collapse
Affiliation(s)
- Jian Liu
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| | - Sevan Arabaciyan
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| | - Jean Marie François
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| | - Jean-Pascal Capp
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| |
Collapse
|
3
|
Qu Y, Yang Y, Ma D, He L, Xiao W. Expression level of histone deacetylase 2 correlates with occurring of chronic obstructive pulmonary diseases. Mol Biol Rep 2012; 40:3995-4000. [DOI: 10.1007/s11033-012-2477-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/18/2012] [Indexed: 02/01/2023]
|
4
|
Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 2012; 70:491-502. [PMID: 22851206 DOI: 10.1007/s00280-012-1937-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.
Collapse
|