1
|
Platania CBM, Pittalà V, Pascale A, Marchesi N, Anfuso CD, Lupo G, Cristaldi M, Olivieri M, Lazzara F, Di Paola L, Drago F, Bucolo C. Novel indole derivatives targeting HuR-mRNA complex to counteract high glucose damage in retinal endothelial cells. Biochem Pharmacol 2020; 175:113908. [PMID: 32171729 DOI: 10.1016/j.bcp.2020.113908] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
The ELAVL1 (or human antigen R - HuR) RNA binding protein stabilizes the mRNA, with an AU-rich element, of several genes such as growth factors (i.e. VEGF) and inflammatory cytokines (i.e. TNFα). We hereby carried out a virtual screening campaign in order to identify and test novel HuR-mRNA disruptors. Best-scored compounds were tested in an in-vitro model of diabetic retinopathy, namely human retinal endothelial cells (HRECs) challenged with high-glucose levels (25 mM). HuR, VEGF and TNFα protein contents were evaluated by western-blot analysis in total cell lysates. VEGF and TNFα released from HRECs were measured in cell medium by ELISA. We found that two derivatives bearing indole moiety, VP12/14 and VP12/110, modulated HuR expression and decreased VEGF and TNF-α release by HREC exposed to high glucose (HG) levels. VP12/14 and VP12/110 inhibited VEGF and TNF-α release in HRECs challenged with high glucose levels, similarly to dihydrotanshinone (DHTS), a small molecule known to interfere with HuR- TNFα mRNA binding. The present findings demonstrated that VP12/14 and VP12/110 are innovative molecules with anti-inflammatory and anti-angiogenic properties, suggesting their potential use as novel candidates for treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Departement of Drug Sciences, University of Catania, Catania, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Campus Bio-Medico University, Roma, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
2
|
Floresta G, Rescifina A. Metyrapone-β-cyclodextrin supramolecular interactions inferred by complementary spectroscopic/spectrometric and computational studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Nekkaa I, Palkó M, Mándity IM, Miklós F, Fülöp F. Continuous-Flow retro-Diels-Alder Reaction: A Process Window for Designing Heterocyclic Scaffolds. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imane Nekkaa
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - István M. Mándity
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- Institute of Organic Chemistry; Semmelweis University; Hogyes Endre u. 7 1092 Budapest Hungary
- MTA TTK Lendület Artificial Transporter Research Group; Institute of Materials and Environmental Chemistry; Hungarian Academy of Sciences; Magyar Tudosok krt. 2 1117 Budapest Hungary
| | - Ferenc Miklós
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- MTA-SZTE Stereochemistry Research Group; Hungarian Academy of Sciences; Eötvös u. 6 6720 Szeged Hungary
| |
Collapse
|
4
|
Pathania S, Rawal RK. Pyrrolopyrimidines: An update on recent advancements in their medicinal attributes. Eur J Med Chem 2018; 157:503-526. [PMID: 30114661 DOI: 10.1016/j.ejmech.2018.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
Abstract
Fused heterocycles are reported to demonstrate variety of biological activities such as anticancer, antibacterial, antifungal and anti-inflammatory, and are thus exhaustively utilized in the field of medicinal chemistry. Pyrrolopyrimidines is one of the major classes of fused heterocycles which are extensively reported throughout the literature. Several reports suggest that pyrrolopyrimidine as fused scaffold possess more diverse and potent pharmacological profile than individual pyrrole and pyrimidine nucleus. Different pathological targets require different structural attributes reflected via varied substitutions, thus in recent years, researchers have employed various synthetic strategies to achieve desired substitutions on the pyrrolopyrimidine nucleus. In this review, authors highlight the recent advancement in this area, special focus was laid on the pharmacological profile and structure-activity relationship studies (SAR) of various synthesized pyrrolopyrimidine derivatives.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, Haryana, India.
| |
Collapse
|
5
|
Heme Oxygenase Inhibition Sensitizes Neuroblastoma Cells to Carfilzomib. Mol Neurobiol 2018; 56:1451-1460. [PMID: 29948946 DOI: 10.1007/s12035-018-1133-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Neuroblastoma (NB) is an embryonic malignancy affecting the physiological development of adrenal medulla and paravertebral sympathetic ganglia in early infancy. Proteasome inhibitors (PIs) (i.e., carfilzomib (CFZ)) may represent a possible pharmacological treatment for solid tumors including NB. In the present study, we tested the effect of a novel non-competitive inhibitor of heme oxygenase-1 (HO-1), LS1/71, as a possible adjuvant therapy for the efficacy of CFZ in neuroblastoma cells. Our results showed that CFZ increased both HO-1 gene expression (about 18-fold) and HO activity (about 8-fold), following activation of the ER stress pathway. The involvement of HO-1 in CFZ-mediated cytotoxicity was further confirmed by the protective effect of pharmacological induction of HO-1, significantly attenuating cytotoxicity. In addition, HO-1 selective inhibition by a specific siRNA increased the cytotoxic effect following CFZ treatment in NB whereas SnMP, a competitive pharmacological inhibitor of HO, showed no changes in cytotoxicity. Our data suggest that treatment with CFZ produces ER stress in NB without activation of CHOP-mediated apoptosis, whereas co-treatment with CFZ and LS1/71 led to apoptosis activation and CHOP expression induction. In conclusion, our study showed that treatment with the non-competitive inhibitor of HO-1, LS1 / 71, increased cytotoxicity mediated by CFZ, triggering apoptosis following ER stress activation. These results suggest that PIs may represent a possible pharmacological treatment for solid tumors and that HO-1 inhibition may represent a possible strategy to overcome chemoresistance and increase the efficacy of chemotherapic regimens.
Collapse
|
6
|
Synthesis and activity of di- or trisubstituted N -(phenoxyalkyl)- or N -{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives on the central nervous system. Bioorg Med Chem Lett 2018; 28:2039-2049. [DOI: 10.1016/j.bmcl.2018.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/19/2022]
|
7
|
Novel Structural Insight into Inhibitors of Heme Oxygenase-1 (HO-1) by New Imidazole-Based Compounds: Biochemical and In Vitro Anticancer Activity Evaluation. Molecules 2018; 23:molecules23051209. [PMID: 29783634 PMCID: PMC6099553 DOI: 10.3390/molecules23051209] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper, the design, synthesis, and molecular modeling of a new azole-based HO-1 inhibitors was reported, using compound 1 as a lead compound, in which an imidazole moiety is linked to a hydrophobic group by means of an ethanolic spacer. The tested compounds showed a good inhibitor activity and possessed IC50 values in the micromolar range. These results were obtained by targeting the hydrophobic western region. Molecular modeling studies confirmed a consolidated binding mode in which the nitrogen of the imidazolyl moiety coordinated the heme ferrous iron, meanwhile the hydrophobic groups were located in the western region of HO-1 binding pocket. Moreover, the new compounds were screened for in silico ADME-Tox properties to predict drug-like behavior with convincing results. Finally, the in vitro antitumor activity profile of compound 1 was investigated in different cancer cell lines and nanomicellar formulation was synthesized with the aim of improving compound's 1 water solubility. Finally, compound 1 was tested in melanoma cells in combination with doxorubicin showing interesting synergic activity.
Collapse
|
8
|
Salerno L, Amata E, Romeo G, Marrazzo A, Prezzavento O, Floresta G, Sorrenti V, Barbagallo I, Rescifina A, Pittalà V. Potholing of the hydrophobic heme oxygenase-1 western region for the search of potent and selective imidazole-based inhibitors. Eur J Med Chem 2018; 148:54-62. [PMID: 29454190 DOI: 10.1016/j.ejmech.2018.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Here we report the design, synthesis, and molecular modeling of new potent and selective imidazole-based HO-1 inhibitors in which the imidazole nucleus and the hydrophobic groups are linked by a phenylethanolic spacer. Most of the tested compounds showed a good inhibitor activity with IC50 values in the low micromolar range, with two of them (1b and 1j) exhibiting also high selectivity toward HO-2. These results were obtained by the idea of potholing the entire volume of the principal hydrophobic western region with an appropriate ligand volume. Molecular modeling studies showed that these molecules bind to the HO-1 in the consolidated fashion where the imidazolyl moiety coordinates the heme iron while the aromatic groups are stabilized by hydrophobic interaction in the western region of the binding pocket. Finally, the synthesized compounds were analyzed for in silico ADME-Tox properties to establish oral drug-like behavior and showed satisfactory results.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
9
|
Role of the Nrf2/HO-1 axis in bronchopulmonary dysplasia and hyperoxic lung injuries. Clin Sci (Lond) 2017; 131:1701-1712. [PMID: 28667068 DOI: 10.1042/cs20170157] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic illness that usually originates in preterm newborns. Generally, BPD is a consequence of respiratory distress syndrome (RDS) which, in turn, comes from the early arrest of lung development and the lack of pulmonary surfactant. The need of oxygen therapy to overcome premature newborns' compromised respiratory function generates an increasing amount of reactive oxygen species (ROS), the onset of sustained oxidative stress (OS) status, and inflammation in the pulmonary alveoli deputies to respiratory exchanges. BPD is a severe and potentially life-threatening disorder that in the most serious cases, can open the way to neurodevelopmental delay. More importantly, there is no adequate intervention to hamper or treat BPD. This perspective article seeks to review the most recent and relevant literature describing the very early stages of BPD and hyperoxic lung injuries focussing on nuclear factor erythroid derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis. Indeed, Nrf2/HO1 activation in response to OS induced lung injury in preterm concurs to the induction of certain number of antioxidant, anti-inflammatory, and detoxification pathways that seem to be more powerful than the activation of one single antioxidant gene. These elicited protective effects are able to counteract/mitigate all multifaceted aspects of the disease and may support novel approaches for the management of BPD.
Collapse
|
10
|
Fekete B, Palkó M, Haukka M, Fülöp F. Synthesis of Pyrrolo[1,2-a]pyrimidine Enantiomers via Domino Ring-Closure followed by Retro Diels-Alder Protocol. Molecules 2017; 22:molecules22040613. [PMID: 28406463 PMCID: PMC6154686 DOI: 10.3390/molecules22040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/14/2023] Open
Abstract
From 2-aminonorbornene hydroxamic acids, a simple and efficient method for the preparation of pyrrolo[1,2-a]pyrimidine enantiomers is reported. The synthesis is based on domino ring-closure followed by microwave-induced retro Diels-Alder (RDA) protocols, where the chirality of the desired products is transferred from norbornene derivatives. The stereochemistry of the synthesized compounds was proven by X-ray crystallography. The absolute configuration of the product is determined by the configuration of the starting amino hydroxamic acid.
Collapse
Affiliation(s)
- Beáta Fekete
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, FIN-40014 Turku, Finland.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös utca 6, Szeged H-6720, Hungary.
| |
Collapse
|
11
|
Synthesis and Experimental Validation of New Designed Heterocyclic Compounds with Antiproliferative Activity versus Breast Cancer Cell Lines MCF-7 and MDA-MB-231. J CHEM-NY 2017. [DOI: 10.1155/2017/9729284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.
Collapse
|
12
|
Zagni C, Guimarães DM, Salerno L, Punzo F, Squarize CH, Mineo PG, Romeo G, Rescifina A. An α1-adrenergic receptor ligand repurposed as a potent antiproliferative agent for head and neck squamous cell carcinoma. RSC Adv 2015. [DOI: 10.1039/c4ra11856a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study we report the anticancer properties of RN5-Me, an α1-adrenergic receptor ligand.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
- Laboratory of Epithelial Biology
| | - Douglas Magno Guimarães
- Laboratory of Epithelial Biology
- Department of Periodontics and Oral Medicine
- University of Michigan
- Ann Arbor
- USA
| | - Loredana Salerno
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Francesco Punzo
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology
- Department of Periodontics and Oral Medicine
- University of Michigan
- Ann Arbor
- USA
| | - Placido Giuseppe Mineo
- CNR-IPCF Istituto per i Processi Chimico Fisici
- 98158 Messina
- Italy
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania
- Università di Catania
| | - Giuseppe Romeo
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
13
|
Romeo G, Salerno L, Pittalà V, Modica MN, Siracusa MA, Materia L, Buccioni M, Marucci G, Minneman KP. High affinity ligands and potent antagonists for the α1D-adrenergic receptor. Novel 3,8-disubstituted [1]benzothieno[3,2-d]pyrimidine derivatives. Eur J Med Chem 2014; 83:419-32. [DOI: 10.1016/j.ejmech.2014.06.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
14
|
Chen XB, Wang XY, Zhu DD, Yan SJ, Lin J. Three-component domino reaction synthesis of highly functionalized bicyclic pyrrole derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Acetamidines and acetamidoximes containing an electron-withdrawing group at the α-carbon atom: their use in the synthesis of nitrogen heterocycles (review)*. Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1277-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Xie SS, Wang XB, Li JY, Kong LY. Design, synthesis and biological evaluation of novel 7-mercaptocoumarin derivatives as α(1)-adrenoceptor antagonists. Chem Pharm Bull (Tokyo) 2013; 61:16-24. [PMID: 23302583 DOI: 10.1248/cpb.c12-00531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Study on the pharmacophore model of α(1)-adrenoceptor (α(1)-AR) antagonists led to design a series of novel 7-mercaptocoumarin derivatives as α(1)-AR antagonists. All designed compounds have been synthesized and biologically evaluated. The results showed that most of them exhibited strong antagonistic activity. Especially compound 6 showed excellent activity, which was better than that of the reference compound prazosin. Structure-activity relationship studies revealed that small hydrophobic group at the terminal heterocyclic ring and ortho substituents on the phenyl ring of phenylpiperazine moiety were the essential structural factors for α(1)-AR antagonistic activity. The pharmacophore modeling studies further clarified their structural contributions to antagonistic activity and also demonstrated that 7-mercaptocoumarin moiety could be a useful scaffold for design of α(1)-AR antagonists.
Collapse
Affiliation(s)
- Sai-Sai Xie
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | | | | | | |
Collapse
|
17
|
Handzlik J, Szymańska E, Wójcik R, Dela A, Jastrzębska-Więsek M, Karolak-Wojciechowska J, Fruziński A, Siwek A, Filipek B, Kieć-Kononowicz K. Synthesis and SAR-study for novel arylpiperazine derivatives of 5-arylidenehydantoin with α1-adrenoceptor antagonistic properties. Bioorg Med Chem 2012; 20:4245-57. [DOI: 10.1016/j.bmc.2012.05.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/25/2022]
|