1
|
18F-labeled magnetic nanoparticles for monitoring anti-angiogenic therapeutic effects in breast cancer xenografts. J Nanobiotechnology 2019; 17:105. [PMID: 31604441 PMCID: PMC6788012 DOI: 10.1186/s12951-019-0534-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop a novel fluorine-18 (18F)-labeled arginine-glycine-aspartic acid (RGD)-coupled ultra-small iron oxide nanoparticle (USPIO) (hereafter, referred to as 18F-RGD@USPIO) and conduct an in-depth investigation to monitor the anti-angiogenic therapeutic effects by using a novel dual-modality PET/MRI probe. METHODS The RGD peptide and 18F were coupled onto USPIO by click chemistry. In vitro experiments including determination of stability, cytotoxicity, cell binding of the obtained 18F-RGD@USPIO were carried out, and the targeting kinetics and bio-distribution were tested on an MDA-MB-231 tumor model. A total of 20 (n = 10 per group) MDA-MB-231 xenograft-bearing mice were treated with bevacizumab or placebo (intraperitoneal injections of bevacizumab or a volume-equivalent placebo solution at the dose of 5 mg/kg for consecutive 7 days, respectively), and underwent PET/CT and MRI examinations with 18F-RGD@USPIO before and after treatment. Imaging findings were validated by histological analysis with regard to β3-integrin expression (CD61 expression), microvascular density (CD31 expression), and proliferation (Ki-67 expression). RESULTS Excellent stability, low toxicity, and good specificity to endothelial of 18F-RGD@USPIO were confirmed. The best time point for MRI scan was 6 h post-injection. No intergroup differences were observed in tumor volume development between baseline and day 7. However, 18F-RGD@USPIO binding was significantly reduced after bevacizumab treatment compared with placebo, both on MRI (P < 0.001) and PET/CT (P = 0.002). Significantly lower microvascular density, tumor cell proliferation, and integrin β3 expression were noted in the bevacizumab therapy group than the placebo group, which were consistent with the imaging results. CONCLUSION PET/MRI with the dual-modality nanoprobe, 18F-RGD@USPIO, can be implemented as a noninvasive approach to monitor the therapeutic effects of anti-angiogenesis in breast cancer model in vivo.
Collapse
|
2
|
Denk C, Wilkovitsch M, Skrinjar P, Svatunek D, Mairinger S, Kuntner C, Filip T, Fröhlich J, Wanek T, Mikula H. [ 18F]Fluoroalkyl azides for rapid radiolabeling and (Re)investigation of their potential towards in vivo click chemistry. Org Biomol Chem 2018; 15:5976-5982. [PMID: 28678258 DOI: 10.1039/c7ob00880e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, radiofluorinated alkyl azides have been reported for click radiolabeling and pretargeted PET imaging, but only little is known about the biodistribution and metabolism of these compounds. In this work, we present a significantly improved procedure for the synthesis of [18F]fluoroethyl azide and reinvestigated this radiolabeled probe in detail showing poor stability and very restricted suitability for in vivo application. Therefore, modified low-molecular-weight [18F]fluoroalkyl azides were developed. Propargyl-tagged endomorphin-1 (as model compound) was successfully radiolabeled in high yield and short reaction time making these probes useful and efficient bioorthogonal tools for rapid radiolabeling. Biodistribution, pharmacokinetics and in vivo stability were studied by preclinical PET/MR scanning and metabolite analysis. The results of this study revealed only limited applicability of [18F]fluoroalkyl azides for in vivo application.
Collapse
Affiliation(s)
- Christoph Denk
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Krishnan HS, Ma L, Vasdev N, Liang SH. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography. Chemistry 2017; 23:15553-15577. [PMID: 28704575 PMCID: PMC5675832 DOI: 10.1002/chem.201701581] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted.
Collapse
Affiliation(s)
- Hema S. Krishnan
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Longle Ma
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
4
|
Huang S, Han Y, Chen M, Hu K, Qi Y, Sun P, Wang M, Wu H, Li G, Wang Q, Du Z, Zhang K, Zhao S, Zheng X. Radiosynthesis and biological evaluation of 18F-labeled 4-anilinoquinazoline derivative ( 18F-FEA-Erlotinib) as a potential EGFR PET agent. Bioorg Med Chem Lett 2017; 28:1143-1148. [PMID: 29486966 DOI: 10.1016/j.bmcl.2017.08.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) has gained significant attention as a therapeutic target. Several EGFR targeting drugs (Gefitinib and Erlotinib) have been approved by US Food and Drug Administration (FDA) and have received high approval in clinical treatment. Nevertheless, the curative effect of these medicines varied in many solid tumors because of the different levels of expression and mutations of EGFR. Therefore, several PET radiotracers have been developed for the selective treatment of responsive patients who undergo PET/CT imaging for tyrosine kinase inhibitor (TKI) therapy. In this study, a novel fluorine-18 labeled 4-anilinoquinazoline based PET tracer, 1N-(3-(1-(2-18F-fluoroethyl)-1H-1,2,3-triazol-4-yl)phenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine (18F-FEA-Erlotinib), was synthesized and biological evaluation was performed in vitro and in vivo. 18F-FEA-Erlotinib was achieved within 50min with over 88% radiochemical yield (decay corrected RCY), an average specific activity over 50GBq/μmol, and over 99% radiochemical purity. In vitro stability study showed no decomposition of 18F-FEA-Erlotinib after incubated in PBS and FBS for 2h. Cellular uptake and efflux experiment results indicated the specific binding of 18F-FEA-Erlotinib to HCC827 cell line with EGFR exon 19 deletions. In vivo, Biodistribution studies revealed that 18F-FEA-Erlotinib exhibited rapid blood clearance both through hepatobiliary and renal excretion. The tumor uptake of 18F-FEA-Erlotinib in HepG2, HCC827, and A431 tumor xenografts, with different EGFR expression and mutations, was visualized in PET images. Our results demonstrate the feasibility of using 18F-FEA-Erlotinib as a PET tracer for screening EGFR TKIs sensitive patients.
Collapse
Affiliation(s)
- Shun Huang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China; Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Min Chen
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongshuai Qi
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Penghui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Men Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guiping Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiyun Du
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Kun Zhang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China; Department of Chemical and Environmental Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xi Zheng
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Lugato B, Stucchi S, Ciceri S, Iannone MN, Turolla EA, Giuliano L, Chinello C, Todde S, Ferraboschi P. A novel versatile precursor suitable for 18 F-radiolabeling via "click chemistry". J Labelled Comp Radiopharm 2017; 60:466-480. [PMID: 28600889 DOI: 10.1002/jlcr.3529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/06/2022]
Abstract
As an effort to improve 18 F-radiolabeling of biomolecules in method robustness and versatility, we report the synthesis and radiolabeling of a new azido precursor potentially useful for the so-called "click reaction," in particular the ligand-free version of the copper(I)-catalyzed alkyne-azide cycloaddition. The new azido precursor may help to overcome problems sometimes exhibited by most of the currently used analogues, as it is safe to handle and it displays long-term chemical stability, thus facilitating the development of new radiolabeling procedures. Moreover, the formed 18 F-labeled 1,2,3-triazole is potentially metabolically stable and could enhance the in vivo circulation time. The above azido precursor was successfully radiolabeled with 18 F, with 51% radiochemical yield (nondecay-corrected). As a proof of concept, the 18 F-labeled azide was then tested with a suitable alkyne functionalized aminoacid (l-propargylglycine), showing 94% of conversion, and a final radiochemical yield of 27% (>99% radiochemical purity), nondecay-corrected, with a total preparation time of 104 minutes.
Collapse
Affiliation(s)
- B Lugato
- Department of Medicine and Surgery, Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - S Stucchi
- Department of Medicine and Surgery, Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - S Ciceri
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - M N Iannone
- Department of Medicine and Surgery, Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - E A Turolla
- Department of Medicine and Surgery, Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - L Giuliano
- Department of Medicine and Surgery, Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - C Chinello
- Department of Medicine and Surgery, Mass Spectrometry Unit, University of Milano-Bicocca, Monza, Italy
| | - S Todde
- Department of Medicine and Surgery, Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - P Ferraboschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
18F-labeling using click cycloadditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361329. [PMID: 25003110 PMCID: PMC4070495 DOI: 10.1155/2014/361329] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Due to expanding applications of positron emission tomography (PET) there is a demand for developing new techniques to introduce fluorine-18 (t1/2 = 109.8 min). Considering that most novel PET tracers are sensitive biomolecules and that direct introduction of fluorine-18 often needs harsh conditions, the insertion of 18F in those molecules poses an exceeding challenge. Two major challenges during 18F-labeling are a regioselective introduction and a fast and high yielding way under mild conditions. Furthermore, attention has to be paid to functionalities, which are usually present in complex structures of the target molecule. The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and several copper-free click reactions represent such methods for radiolabeling of sensitive molecules under the above-mentioned criteria. This minireview will provide a quick overview about the development of novel 18F-labeled prosthetic groups for click cycloadditions and will summarize recent trends in copper-catalyzed and copper-free click 18F-cycloadditions.
Collapse
|
7
|
Peptide conjugation via CuAAC 'click' chemistry. Molecules 2013; 18:13148-74. [PMID: 24284482 PMCID: PMC6270195 DOI: 10.3390/molecules181113148] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/14/2023] Open
Abstract
The copper (I)-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC) or ‘click’ reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in the presence of other functional moieties. The flexibility and selectivity has resulted in growing interest in the application of CuAAC in various fields. In this review, we briefly describe the importance of the structural folding of peptides and proteins and how the 1,4-disubstituted triazole product of the CuAAC reaction is a suitable isoster for an amide bond. However the major focus of the review is the application of this reaction to produce peptide conjugates for tagging and targeting purpose, linkers for multifunctional biomacromolecules, and reporter ions for peptide and protein analysis.
Collapse
|
8
|
Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18. Molecules 2013; 18:8618-65. [PMID: 23881051 PMCID: PMC6270032 DOI: 10.3390/molecules18078618] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/18/2022] Open
Abstract
The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile bioorthogonal conjugation techniques especially for the radiolabeling of biologically active high molecular weight compounds like peptides, proteins or antibodies. Taking into consideration that the introduction of fluorine-18 (t(1/2) = 109.8 min) proceeds under harsh conditions, radiolabeling of these biologically active molecules represents an outstanding challenge and is of enormous interest. Special attention has to be paid to the method of 18F-introduction. It should proceed in a regioselective manner under mild physiological conditions, in an acceptable time span, with high yields and high specific activities. For these reasons and due to the high number of functional groups found in these compounds, a specific labeling procedure has to be developed for every bioactive macromolecule. Bioorthogonal strategies including the Cu-assisted Huisgen cycloaddition and its copper-free click variant, both Staudinger Ligations or the tetrazine-click reaction have been successfully applied and represent valuable alternatives for the selective introduction of fluorine-18 to overcome the afore mentioned obstacles. This comprehensive review deals with the progress and illustrates the latest developments in the field of bioorthogonal labeling with the focus on the preparation of radiofluorinated building blocks and tracers for molecular imaging.
Collapse
|