1
|
Indira M, Surendranath Reddy EC, Kamala Prasad V, Satyanarayana Swamy V, Kakarla RR, Venkata Krishna Reddy M, Attiri P, Vasu Govardhana Reddy P, Aminabhavi TM. Environmentally friendly and efficient TBHP-mediated catalytic reaction for the synthesis of substituted benzimidazole-2-ones: In-silico approach to pharmaceutical applications. ENVIRONMENTAL RESEARCH 2024; 252:118760. [PMID: 38522741 DOI: 10.1016/j.envres.2024.118760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
A novel method was used to synthesize benzimidazole-2-ones from the corresponding benzimidazolium salts. These salts were subsequently reacted with potassium tertiary butoxide (KOtBu), followed by oxidation using tertiary butyl hydrogen peroxide (TBHP) at room temperature in tetrahydrofuran (THF) to obtain the desired products in 1 h with excellent yields. After optimizing the reaction conditions, the study focused on preparing benzimidazole-2-ones with diverse substituents at N1 and N3 positions, including benzyl, 2',4',6'-trimethyl benzyl groups, and long-chain aliphatic substituents (hexyl, octyl, decyl, and dodecyl). The compounds were characterized by 1H and 13C NMR spectra, of which compound 2a is supported by single crystal XRD. Benzimidazole-2-one compounds exhibited promising anti-inflammatory and anti-cancer properties. The inhibition of mitochondrial Heat Shock Protein 60 (HSP60) of title compounds was also explored. Computational simulations were employed to assess anti-cancer properties of 19 benzimidazole-2-one derivatives (potential drugs). In-silico docking studies demonstrated promising binding interactions with HSP60, and these results were supported by molecular dynamics simulations. Notably, molecules 2b and 2d exhibited high affinity for HSP60 protein, highlighting their potential efficacy. The developed ligands were viable for the treatment of hepatocellular carcinoma (HCC). The findings provide valuable initial evidence supporting the efficacy of benzimidazole-2-ones as HSP60 inhibitors and lay the foundation for subsequent studies, including in-vitro assays.
Collapse
Affiliation(s)
- Meeniga Indira
- Department of Chemistry, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | - E C Surendranath Reddy
- Department of Biotechnology, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | | | - Vyshnava Satyanarayana Swamy
- Denisco Chemicals Pvt Ltd, D-24 Phase-1, Jeedimetla, Hyderabad, 500855, Telangana, India; Department of Biotechnology, University College of Sciences, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | - Pankaj Attiri
- Center of Plasma Nano-interface Engineering, Kyushu University, West Building 2, 744, Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | | | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248 007, India; Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Barakat A, Alshahrani S, Mohammed Al-Majid A, Saleh Alamary A, Haukka M, Abu-Serie MM, Dömling A, Mazyed EA, Badria FA, El-Senduny FF. Novel spirooxindole based benzimidazole scaffold: In vitro, nanoformulation and in vivo studies on anticancer and antimetastatic activity of breast adenocarcinoma. Bioorg Chem 2022; 129:106124. [PMID: 36174446 DOI: 10.1016/j.bioorg.2022.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022]
Abstract
The present work provided in vitro anticancer investigation of novel spirooxindole based benzimidazole scaffold SP1 and its nanoformulation with in vivo evaluation of anticancer and antimetastatic activity as potential drug for breast adenocarcinoma. The synthesized compound SP1 exhibited potent growth inhibitory efficacy against four types of human cancer (breast, prostate, colon and lung) cell lines with IC50 = 2.4, 3.4, 7.24 and 7.81 µM and selectivity index 5.79, 4.08, 1.93 and 1.78 respectively. Flow cytometric analysis illustrated that SP1 exhibited high apoptotic effect on all tested cancer cell lines (38.22-52.3 %). The mode of action of this promising compound was declared by its ability to upregulate the gene expression of p21 (2.29-3.91 folds) with suppressing cyclin D (1.9-8.93 folds) and NF-κB (1.26-1.44 fold) in the treated cancer cells. Also, it enhanced the protein expression of apoptotic marker p53 and moderate binding affinity for MDM2 (KD;7.94 μM). Notwithstanding these promising impressive findings, its selectivity against cancer cell lines and safety on normal cells were improved by nanoformulation. Therefore, SP1 was formulated as ultra-flexible niosomal nanovesicles (transethoniosomes). The ultra-deformability is attributable to the synergism between ethanol and edge activators in improving the flexibility of the nanovesicular membrane. F8 exhibited high deformability index (DI) of (23.48 ± 1.4). It was found that % SP1 released from the optimized transethoniosomal formula (F8) after 12 h (Q12h) was 84.17 ± 1.29 % and its entrapment efficiency (%EE) was 76.48 ± 1.44 %. Based upon the very encouraging and promising in vitro results, an in vivo study was carried out in female Balb/c mice weighing (15-25 g). SP1 did halt the proliferation of breast cancer cells as well as suppressed the metastasis in other organs like liver, lung and heart.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Eman A Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh P.O. Box 33516, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansura University, Mansura 35516, Egypt
| |
Collapse
|
3
|
Wang B, Peng F, Huang W, Zhou J, Zhang N, Sheng J, Haruehanroengra P, He G, Han B. Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharm Sin B 2020; 10:1492-1510. [PMID: 32963945 PMCID: PMC7488488 DOI: 10.1016/j.apsb.2019.12.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Simultaneous inhibition of MDM2 and CDK4 may be an effective treatment against glioblastoma. A collection of chiral spirocyclic tetrahydronaphthalene (THN)-oxindole hybrids for this purpose have been developed. Appropriate stereochemistry in THN-fused spirooxindole compounds is key to their inhibitory activity: selectivity differed by over 40-fold between the least and most potent stereoisomers in time-resolved FRET and KINOMEscan® in vitro assays. Studies in glioblastoma cell lines showed that the most active compound ent-4g induced apoptosis and cell cycle arrest by interfering with MDM2 -P53 interaction and CDK4 activation. Cells treated with ent-4g showed up-regulation of proteins involved in P53 and cell cycle pathways. The compound showed good anti-tumor efficacy against glioblastoma xenografts in mice. These results suggested that rational design, asymmetric synthesis and biological evaluation of novel tetrahydronaphthalene fused spirooxindoles could generate promising MDM2-CDK4 dual inhibitors in glioblastoma therapy.
Collapse
|
4
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
5
|
Abstract
Artificial macrocycles recently became popular as a novel research field in drug discovery. As opposed to their natural twins, artificial macrocycles promise to have better control on synthesizability and control over their physicochemical properties resulting in druglike properties. Very few synthetic methods allow for the convergent, fast but diverse access to large macrocycles chemical space. One synthetic technology to access artificial macrocycles with potential biological activity, multicomponent reactions, is reviewed here, with a focus on our own work. We believe that synthetic chemists have to acquaint themselves more with structure and activity to leverage the design aspect of their daily work.
Collapse
Affiliation(s)
- Eman M M Abdelraheem
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Shabnam Shaabani
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|
6
|
Shaabani S, Neochoritis CG, Twarda-Clapa A, Musielak B, Holak TA, Dömling A. Scaffold hopping via ANCHOR.QUERY: β-lactams as potent p53-MDM2 antagonists †. MEDCHEMCOMM 2017; 8:1046-1052. [PMID: 29034069 DOI: 10.1039/c7md00058h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the pharmacophore-based virtual screening platform ANCHOR.QUERY, we morphed our recently described Ugi-4CR scaffold towards a β-lactam scaffold with potent p53-MDM2 antagonizing activities. 2D-HSQC and FP measurements confirm potent MDM2 binding. Molecular modeling studies are used to understand the observed SAR in the β-lactam series.
Collapse
Affiliation(s)
- S Shaabani
- Department of Drug Design, University of Groningen, The Netherlands.,Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - C G Neochoritis
- Department of Drug Design, University of Groningen, The Netherlands
| | - A Twarda-Clapa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - B Musielak
- Department of Chemistry, Jagiellonian University, Krakow, Poland
| | - T A Holak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Chemistry, Jagiellonian University, Krakow, Poland
| | - A Dömling
- Department of Drug Design, University of Groningen, The Netherlands
| |
Collapse
|
7
|
Advances in the synthesis of benzimidazolones via rearrangements of benzodiazepinones and quinoxalin(on)es. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Gollner A, Rudolph D, Arnhof H, Bauer M, Blake SM, Boehmelt G, Cockroft XL, Dahmann G, Ettmayer P, Gerstberger T, Karolyi-Oezguer J, Kessler D, Kofink C, Ramharter J, Rinnenthal J, Savchenko A, Schnitzer R, Weinstabl H, Weyer-Czernilofsky U, Wunberg T, McConnell DB. Discovery of Novel Spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one Compounds as Chemically Stable and Orally Active Inhibitors of the MDM2-p53 Interaction. J Med Chem 2016; 59:10147-10162. [PMID: 27775892 DOI: 10.1021/acs.jmedchem.6b00900] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).
Collapse
Affiliation(s)
- Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Dorothea Rudolph
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Markus Bauer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Sophia M Blake
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Xiao-Ling Cockroft
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Georg Dahmann
- Boehringer Ingelheim Pharma GmbH & Co. KG , 88400 Biberach, Germany
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jale Karolyi-Oezguer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Juergen Ramharter
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jörg Rinnenthal
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Alexander Savchenko
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | | | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
9
|
Bai R, Yang J, Min L, Liu C, Wu F, Gu Y. Facile synthesis of 3,4-fused tricyclic indoles with a seven-membered ring through a three-component reaction of 4-hydroxyindole, aldehyde, and malonodinitrile or ethyl cyanoacetate. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Benzimidazolone bioisosteres of potent GluN2B selective NMDA receptor antagonists. Eur J Med Chem 2016; 116:136-146. [PMID: 27061977 DOI: 10.1016/j.ejmech.2016.03.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/27/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022]
Abstract
Overactivation of the NMDA receptor is associated with excitotoxic events leading to neurodegenerative processes as observed during the development of Alzheimer's disease, ParFnson's disease, Chorea Huntington and epilepsy. Negative allosteric modulators addressing selectively the ifenprodil binding site of GluN2B subunit containing NMDA receptors are of major interest due to their neuroprotective potential accompanied by few side effects. Herein benzimidazolone bioisosteres of potent GluN2B antagonists 1-5 were designed and synthesized. A seven step sequence provided the central intermediate 19 in 28% yield. Elimination of water, methylation, epoxidation, epoxide rearrangement and finally reductive amination afforded the [7]annulenobenzimidazolone 30 with a 3-phenylpropylamino substituent in 6-position. Although 30 fits nicely into the pharmacophore of potent GluN2B antagonists, the gluN2B binding affinity of 30 was only moderate (Ki = 697 nM). Additionally, 30 shows low selectivity over the σ2 receptor (Ki = 549 nM). The moderate GluN2B affinity was explained by the rigid tricyclic structure of the [7]annulenobenzimidazolone 30.
Collapse
|
11
|
Kroon E, Schulze JO, Süß E, Camacho CJ, Biondi RM, Dömling A. Discovery of a Potent Allosteric Kinase Modulator by Combining Computational and Synthetic Methods. Angew Chem Int Ed Engl 2015; 54:13933-6. [PMID: 26385475 PMCID: PMC4721676 DOI: 10.1002/anie.201506310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/12/2015] [Indexed: 12/14/2022]
Abstract
The rational design of allosteric kinase modulators is challenging but rewarding. The protein kinase PDK1, which lies at the center of the growth-factor signaling pathway, possesses an allosteric regulatory site previously validated both in vitro and in cells. ANCHOR.QUERY software was used to discover a potent allosteric PDK1 kinase modulator. Using a recently published PDK1 compound as a template, several new scaffolds that bind to the allosteric target site were generated and one example was validated. The inhibitor can be synthesized in one step by multicomponent reaction (MCR) chemistry when using the ANCHOR.QUERY approach. Our results are significant because the outlined approach allows rapid and efficient scaffold hopping from known molecules into new easily accessible and biologically active ones. Based on increasing interest in allosteric-site drug discovery, we foresee many potential applications for this approach.
Collapse
Affiliation(s)
- Edwin Kroon
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl
| | - Jörg O Schulze
- Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
| | - Evelyn Süß
- Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
| | - Carlos J Camacho
- University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261 (USA)
| | - Ricardo M Biondi
- Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl.
| |
Collapse
|
12
|
Kroon E, Schulze JO, Süß E, Camacho CJ, Biondi RM, Dömling A. Discovery of a Potent Allosteric Kinase Modulator by Combining Computational and Synthetic Methods. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Edwin Kroon
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl
| | - Jörg O. Schulze
- Universitätsklinikum Frankfurt, Theodor‐Stern‐Kai 7, 60590 Frankfurt (Germany)
| | - Evelyn Süß
- Universitätsklinikum Frankfurt, Theodor‐Stern‐Kai 7, 60590 Frankfurt (Germany)
| | - Carlos J. Camacho
- University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261 (USA)
| | - Ricardo M. Biondi
- Universitätsklinikum Frankfurt, Theodor‐Stern‐Kai 7, 60590 Frankfurt (Germany)
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl
| |
Collapse
|
13
|
Andreoli F, Kaid-Slimane R, Coppola F, Farran D, Roussel C, Vanthuyne N. Access to N-Thioalkenyl and N-(o-Thio)aryl-benzimidazol-2-ones by Ring Opening of Thiazolobenzimidazolium and Benzimidazobenzothiazolium Salts and C–O Bond Cleavage of an Alkoxide. J Org Chem 2015; 80:3233-41. [DOI: 10.1021/acs.joc.5b00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Federico Andreoli
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Radia Kaid-Slimane
- Laboratoire
de synthèse organique appliquée, Département
de Chimie, Faculté des Sciences, Université d’Oran (Es Sénia), B.P. 1524, El M’naouer
Oran, Algérie
| | - Fabien Coppola
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Daniel Farran
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Christian Roussel
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| |
Collapse
|
14
|
Díaz-Cervantes E, Islas-Jácome A, Rentería-Gómez A, Robles J, Gámez-Montaño R. In vitro and in silico evaluation of twelve newly-synthesized 1-acetamide-5-methoxy-2-oxindoles as 5-Ht₇ receptor ligands. Bioorg Med Chem Lett 2015; 25:1580-5. [PMID: 25724826 DOI: 10.1016/j.bmcl.2015.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/28/2022]
Abstract
Based on in vitro studies of twelve newly-synthesized 1-acetamide-5-methoxy-2-oxindoles as 5-Ht7 receptor ligands, Structure Affinity Relationship (SAR) and Quantitative Structure Affinity Relationship model (QSAR) are provided. Also, a ligand-based pharmacophore model is proposed through molecular docking techniques and Nucleus Independent Chemical Shift DFT calculations (NICS).
Collapse
Affiliation(s)
- Erik Díaz-Cervantes
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Guanajuato, Mexico; Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Guanajuato, Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Guanajuato, Mexico
| | - Angel Rentería-Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Guanajuato, Mexico
| | - Juvencio Robles
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Guanajuato, Mexico.
| | - Rocío Gámez-Montaño
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Guanajuato, Mexico.
| |
Collapse
|
15
|
Rentería-Gómez A, Islas-Jácome A, Jiménez-Halla JOC, Gámez-Montaño R. Regiospecific synthesis of 1-acetamide-5-methoxy-2-oxindoles in two steps: (Ugi-SN2)/xanthate mediated free radical cyclization. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Vázquez-Romero A, Kielland N, Arévalo MJ, Preciado S, Mellanby RJ, Feng Y, Lavilla R, Vendrell M. Multicomponent reactions for de novo synthesis of BODIPY probes: in vivo imaging of phagocytic macrophages. J Am Chem Soc 2013; 135:16018-21. [PMID: 24111937 DOI: 10.1021/ja408093p] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multicomponent reactions are excellent tools to generate complex structures with broad chemical diversity and fluorescent properties. Herein we describe the adaptation of the fluorescent BODIPY scaffold to multicomponent reaction chemistry with the synthesis of BODIPY adducts with high fluorescence quantum yields and good cell permeability. From this library we identified one BODIPY derivative (PhagoGreen) as a low-pH sensing fluorescent probe that enabled imaging of phagosomal acidification in activated macrophages. The fluorescence emission of PhagoGreen was proportional to the degree of activation of macrophages and could be specifically blocked by bafilomycin A, an inhibitor of phagosomal acidification. PhagoGreen does not impair the normal functions of macrophages and can be used to image phagocytic macrophages in vivo.
Collapse
|