1
|
Synthesis and biological evaluation of antibacterial activity of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Bioorg Chem 2022; 127:106020. [PMID: 35841669 DOI: 10.1016/j.bioorg.2022.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Bacterial infection is still one of the diseases that threaten human health, and bacterial drug resistance is widespread worldwide. As a result, their eradication now largely relies on antibacterial drug discovery. Here, we reveal a novel approach to the development of 14-membered macrolide antibiotics by describing the design, synthesis, and evaluation of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Using chemical synthesis, 35 clarithromycin derivatives were prepared, and their antibacterial properties were profiled. We found that compounds 8e-8h, 8l-8o, 8v, and 19d were as potent as azithromycin against Enterococcus faecalis ATCC29212. Furthermore, compounds 8c, 8d, 8n, and 8o showed slightly improved antibacterial activity (2-fold) against Acinetobacter baumannii ATCC19606 when compared with azithromycin and clarithromycin. In addition, compounds 8e, 8f, 8h, 8l, and 8v exhibited excellent antibacterial activity against Staphylococcus aureus ATCC43300, Staphylococcus aureus PR, and Streptococcus pneumoniae ER-2. These compounds were generally 64- to 128-fold more active than azithromycin, and 32- to 128-fold more active than clarithromycin. The results of molecular docking indicated that compound 8f may bind to the nucleotide residue A752 through hydrogen-bonding, hydrophobic, electrostatic, or π-π stacking interactions. The predicted ClogP data suggested that higher values of ClogP (>6.65) enhanced the antibacterial activity of compounds such as 8e, 8f, 8h, 8l, and 8v. The determination of the minimum bactericidal concentration showed that most of the tested compounds were bacteriostatic agents. From this study of bactericidal kinetics, we can conclude that compound 8f had a concentration- and time-dependent effect on the proliferation of Staphylococcus aureus ATCC43300. Finally, the results of the cytotoxicity assay showed that compound 8f exhibited no toxicity at the effective antibacterial concentration.
Collapse
|
2
|
Bai B, Bi F, Qin Y, Teng Y, Ma S. Design, synthesis and antibacterial evaluation of novel C-11, C-9 or C-2'-substituted 3-O-descladinosyl-3-ketoclarithromycin derivatives. Bioorg Med Chem Lett 2021; 43:128110. [PMID: 33991629 DOI: 10.1016/j.bmcl.2021.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
A novel series of 3-O-descladinosyl-3-keto-clarithromycin derivatives, including 11-O-carbamoyl-3-O-descladinosyl-3-keto-clarithromycin derivatives and 2',9(S)-diaryl-3-O-descladinosyl-3-keto-clarithromycin derivatives, were designed, synthesized and evaluated for their in vitro antibacterial activity. Among them, some derivatives were found to have activity against resistant bacteria strains. In particular, compound 9b showed not only the most significantly improved activity (16 µg/mL) against S. aureus ATCC43300 and S. aureus ATCC31007, which was >16-fold more active than that of CAM and AZM, but also the best activity against S. pneumoniae B1 and S. pyogenes R1, with MIC values of 32 and 32 µg/mL. In addition, compounds 9a, 9c, 9d and 9g exhibited the most effective activity against S. pneumoniae AB11 with MIC values of 32 or 64 µg/mL as well. Unfortunately, 2',9(S)-diaryl-3-O-descladinosyl-3-keto-clarithromycin derivatives failed to exhibit better antibacterial activity than references. It can be seen that the combined modification of the C-3 and C-11 positions of clarithromycin is beneficial to improve activity against resistant bacteria, while the single modification of the C-2'' position is very detrimental to antibacterial activity.
Collapse
Affiliation(s)
- Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Fangchao Bi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| |
Collapse
|
3
|
Qin Y, Song D, Teng Y, Liu X, Zhang P, Zhang N, Zhang N, Chen W, Ma S. Design, synthesis and structure-activity relationships of novel N11-, C12- and C13-substituted 15-membered homo-aza-clarithromycin derivatives against various resistant bacteria. Bioorg Chem 2021; 113:104992. [PMID: 34051415 DOI: 10.1016/j.bioorg.2021.104992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Bacterial infections are still the main significant problem of public health in the world, and their elimination will greatly rely on the discovery of antibacterial drugs. In the processes of our searching for novel macrolide derivatives with excellent activity against sensitive and resistant bacteria, three series of novel N11-, C12- and C13-substituted 15-membered homo-aza-clarithromycin derivatives were designed and synthesized as Series A, B and C by creatively opening the lactone ring of clarithromycin (CAM), introducing various 4-substituted phenyl-1H-1,2,3-triazole side chains at the N11, C12 or C13 position of CAM and macrolactonization. The results from their in vitro antibacterial activity demonstrated that compounds 20c, 20d and 20f displayed not only the most potent activity against S. aureus ATCC25923 with the MIC values of 0.5, 0.5 and 0.5 µg/mL, but also greatly improved activity against B. subtilis ATCC9372 with the MIC values of less than or equal to 0.25, 0.25 and 0.25 µg/mL, respectively. In particular, compound 11g exhibited the strongest antibacterial effectiveness against all the tested resistant bacterial strains and had well balanced activity with the MIC values of 4-8 µg/mL. Further study on minimum bactericidal concentration and kinetics confirmed that compound 11g possessed a bacteriostatic effect on bacterial proliferation. Moreover, the results of molecular docking revealed an potential additional binding force between compound 11g and U790 in addition to the normal binding force of macrolide skeleton, which may explain why this compound performed the most potent activity against resistant bacteria. The results of cytotoxic assay indicated that compounds 20c, 20d and 20f were non-toxic to human breast cancer MCF-7 cells at its effective antibacterial concentration.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Xingbang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Nan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Na Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China.
| |
Collapse
|
4
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur J Med Chem 2019; 182:111662. [DOI: 10.1016/j.ejmech.2019.111662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
6
|
Design, synthesis and antibacterial evaluation of novel 15-membered 11a-azahomoclarithromycin derivatives with the 1, 2, 3-triazole side chain. Eur J Med Chem 2019; 180:321-339. [DOI: 10.1016/j.ejmech.2019.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/17/2019] [Accepted: 07/07/2019] [Indexed: 11/23/2022]
|
7
|
Gouda H, Nakayama N, Miura T, Kanemoto K, Ajito K. Computational study on formation of 15-membered azalactone by double reductive amination using molecular mechanics and density functional theory calculations. J Antibiot (Tokyo) 2018. [DOI: 10.1038/s41429-018-0030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol 2016; 133:4-19. [PMID: 27720719 DOI: 10.1016/j.bcp.2016.10.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
The introduction of antibiotics into clinical practice revolutionized the treatment and management of infectious diseases. Before the introduction of antibiotics, these diseases were the leading cause of morbidity and mortality in human populations. This review presents a brief history of discovery of the main antimicrobial classes (arsphenamines, β-lactams, sulphonamides, polypeptides, aminoglycosides, tetracyclines, amphenicols, lipopeptides, macrolides, oxazolidinones, glycopeptides, streptogramins, ansamycins, quinolones, and lincosamides) that have changed the landscape of contemporary medicine. Given within a historical timeline context, the review discusses how the introduction of certain antimicrobial classes affected the morbidity and mortality rates due to bacterial infectious diseases in human populations. Problems of resistance to antibiotics of different classes are also extensively discussed.
Collapse
Affiliation(s)
- Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
9
|
Ajito K, Miura T, Furuuchi T, Tamura A. Sixteen-Membered Macrolides: Chemical Modifications and Future Applications. HETEROCYCLES 2014. [DOI: 10.3987/rev-13-785] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Abstract
Biological functions of antibiotics are not limited to killing. The most likely function of antibiotics in natural microbial ecosystems is signaling. Does this signaling function of antibiotics also extend to the eukaryotic – in particular mammalian – cells? In this review, the host modulating properties of three classes of antibiotics (macrolides, tetracyclines, and β-lactams) will be briefly discussed. Antibiotics can be effective in treatment of a broad spectrum of diseases and pathological conditions other than those of infectious etiology and, in this capacity, may find widespread applications beyond the intended antimicrobial use. This use, however, should not compromise the primary function antibiotics are used for. The biological background for this inter-kingdom signaling is also discussed.
Collapse
Affiliation(s)
- Rustam I Aminov
- Faculty of Medical Sciences, University of the West Indies Kingston, Jamaica
| |
Collapse
|