1
|
Berlin M, Cantley J, Bookbinder M, Bortolon E, Broccatelli F, Cadelina G, Chan EW, Chen H, Chen X, Cheng Y, Cheung TK, Davenport K, DiNicola D, Gordon D, Hamman BD, Harbin A, Haskell R, He M, Hole AJ, Januario T, Kerry PS, Koenig SG, Li L, Merchant M, Pérez-Dorado I, Pizzano J, Quinn C, Rose CM, Rousseau E, Soto L, Staben LR, Sun H, Tian Q, Wang J, Wang W, Ye CS, Ye X, Zhang P, Zhou Y, Yauch R, Dragovich PS. PROTACs Targeting BRM (SMARCA2) Afford Selective In Vivo Degradation over BRG1 (SMARCA4) and Are Active in BRG1 Mutant Xenograft Tumor Models. J Med Chem 2024; 67:1262-1313. [PMID: 38180485 DOI: 10.1021/acs.jmedchem.3c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.
Collapse
Affiliation(s)
- Michael Berlin
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Jennifer Cantley
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Mark Bookbinder
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Elizabeth Bortolon
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Fabio Broccatelli
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Greg Cadelina
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Emily W Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huifen Chen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xin Chen
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Yunxing Cheng
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Tommy K Cheung
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kim Davenport
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Dean DiNicola
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Debbie Gordon
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Brian D Hamman
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Alicia Harbin
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Roy Haskell
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Alison J Hole
- Evotec (U.K.) Ltd., 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Thomas Januario
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip S Kerry
- Evotec (U.K.) Ltd., 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Stefan G Koenig
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Limei Li
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Mark Merchant
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jennifer Pizzano
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Connor Quinn
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Christopher M Rose
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emma Rousseau
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Leofal Soto
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongming Sun
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Qingping Tian
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jing Wang
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Weifeng Wang
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Crystal S Ye
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaofen Ye
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Penghong Zhang
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Yuhui Zhou
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Yauch
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
3
|
van der Kolk MR, Janssen MACH, Rutjes FPJT, Blanco‐Ania D. Cyclobutanes in Small-Molecule Drug Candidates. ChemMedChem 2022; 17:e202200020. [PMID: 35263505 PMCID: PMC9314592 DOI: 10.1002/cmdc.202200020] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Indexed: 11/13/2022]
Abstract
Cyclobutanes are increasingly used in medicinal chemistry in the search for relevant biological properties. Important characteristics of the cyclobutane ring include its unique puckered structure, longer C-C bond lengths, increased C-C π-character and relative chemical inertness for a highly strained carbocycle. This review will focus on contributions of cyclobutane rings in drug candidates to arrive at favorable properties. Cyclobutanes have been employed for improving multiple factors such as preventing cis/trans-isomerization by replacing alkenes, replacing larger cyclic systems, increasing metabolic stability, directing key pharmacophore groups, inducing conformational restriction, reducing planarity, as aryl isostere and filling hydrophobic pockets.
Collapse
Affiliation(s)
- Marnix R. van der Kolk
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Mathilde A. C. H. Janssen
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Daniel Blanco‐Ania
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| |
Collapse
|
4
|
Bailey JJ, Wuest M, Bojovic T, Kronemann T, Wängler C, Wängler B, Wuest F, Schirrmacher R. On the Viability of Tadalafil-Based 18F-Radiotracers for In Vivo Phosphodiesterase 5 (PDE5) PET Imaging. ACS OMEGA 2021; 6:21741-21754. [PMID: 34471776 PMCID: PMC8388084 DOI: 10.1021/acsomega.1c03315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Phosphodiesterase 5 (PDE5) is a clinically relevant biomarker and therapeutic target for many human pathologies, yet a noninvasive agent for the assessment of PDE5 expression has yet to be realized. Such agents would improve our understanding of the nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP)/PDE5 pathway in human pathologies and potentially lead to novel uses of PDE5 inhibitors to manage lung conditions like SARS-CoV-2-mediated pulmonary inflammatory responses. In this study, efforts were made to produce an 18F-labeled analogue of the PDE5 inhibitor tadalafil to visualize PDE5 expression in vivo with positron emission tomography (PET). However, during the late-stage fluorination step, quantitative epimerization of the tadalafil C12a stereocenter occurred, yielding a less active epi-isomer. In vivo dynamic microPET images in mice revealed that the epimerized radiotracer, [18F]epi-18, rapidly accumulated in the liver with negligible uptake in tissues of known PDE5 expression.
Collapse
Affiliation(s)
- Justin J. Bailey
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Melinda Wuest
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Tamara Bojovic
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Travis Kronemann
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department
of Clinical Radiology and Nuclear
Medicine and Molecular Imaging and Radiochemistry, Department of Clinical Radiology
and Nuclear Medicine, Medical Faculty Mannheim
of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Björn Wängler
- Biomedical Chemistry, Department
of Clinical Radiology and Nuclear
Medicine and Molecular Imaging and Radiochemistry, Department of Clinical Radiology
and Nuclear Medicine, Medical Faculty Mannheim
of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Frank Wuest
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Ralf Schirrmacher
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
5
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Laube M, Gassner C, Neuber C, Wodtke R, Ullrich M, Haase-Kohn C, Löser R, Köckerling M, Kopka K, Kniess T, Hey-Hawkins E, Pietzsch J. Deuteration versus ethylation - strategies to improve the metabolic fate of an 18F-labeled celecoxib derivative. RSC Adv 2020; 10:38601-38611. [PMID: 35517533 PMCID: PMC9057277 DOI: 10.1039/d0ra04494f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
The inducible isoenzyme cyclooxygenase-2 (COX-2) is closely associated with chemo-/radioresistance and poor prognosis of solid tumors. Therefore, COX-2 represents an attractive target for functional characterization of tumors by positron emission tomography (PET). In this study, the celecoxib derivative 3-([18F]fluoromethyl)-1-[4-(methylsulfonyl)phenyl]-5-(p-tolyl)-1H-pyrazole ([18F]5a) was chosen as a lead compound having a reported high COX-2 inhibitory potency and a potentially low carbonic anhydrase binding tendency. The respective deuterated analog [D2,18F]5a and the fluoroethyl-substituted derivative [18F]5b were selected to study the influence of these modifications with respect to COX inhibition potency in vitro and metabolic stability of the radiolabeled tracers in vivo. COX-2 inhibitory potency was found to be influenced by elongation of the side chain but, as expected, not by deuteration. An automated radiosynthesis comprising 18F-fluorination and purification under comparable conditions provided the radiotracers [18F]5a,b and [D2,18F]5a in good radiochemical yields (RCY) and high radiochemical purity (RCP). Biodistribution and PET studies comparing all three compounds revealed bone accumulation of 18F-activity to be lowest for the ethyl derivative [18F]5b. However, the deuterated analog [D2,18F]5a turned out to be the most stable compound of the three derivatives studied here. Time-dependent degradation of [18F]5a,b and [D2,18F]5a after incubation in murine liver microsomes was in accordance with the data on metabolism in vivo. Furthermore, metabolites were identified based on UPLC-MS/MS. The aim of this study is to investigate the influence of deuteration and elongation on an 18F-labeled COX-2 inhibitor with focus on metabolic stability to develop suitable COX-2 targeting radiotracers.![]()
Collapse
Affiliation(s)
- Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Cemena Gassner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany .,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4 D-01062 Dresden Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Cathleen Haase-Kohn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Martin Köckerling
- University of Rostock, Institute of Chemistry, Department of Inorganic Solid State Chemistry Albert-Einstein-Str. 3a D-18059 Rostock Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry Johannisallee 29 D-04103 Leipzig Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany .,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4 D-01062 Dresden Germany
| |
Collapse
|
7
|
Feskov IO, Golub BO, Vashchenko BV, Levterov VV, Kondratov IS, Grygorenko OO, Haufe G. GABA Analogues and Related Mono-/Bifunctional Building Blocks Derived from the Fluorocyclobutane Scaffold. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Illia O. Feskov
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry; NAS of Ukraine; Murmanska Street 1 02660 Kyiv Ukraine
| | | | - Bohdan V. Vashchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | | | - Ivan S. Kondratov
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Günter Haufe
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
- Cells-in-Motion Cluster of Excellence; Westfälische Wilhelms-Universität Münster; Waldeyerstraße 15 48149 Münster Germany
| |
Collapse
|
8
|
Kozytskiy AV, Panasyuk YV, Mishura AM. Photocatalytic Monofluorination of Unactivated C(sp3)–H Bonds by N-Fluorobenzenesulfimide Involving the Decatungstate Anion and the Effect of Water Additives on These Reactions. THEOR EXP CHEM+ 2018. [DOI: 10.1007/s11237-018-9577-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Synthesis of fluorinated amino acid derivatives through late-stage deoxyfluorinations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Schirrmacher R, Wängler B, Bailey J, Bernard-Gauthier V, Schirrmacher E, Wängler C. Small Prosthetic Groups in 18F-Radiochemistry: Useful Auxiliaries for the Design of 18F-PET Tracers. Semin Nucl Med 2017; 47:474-492. [PMID: 28826522 DOI: 10.1053/j.semnuclmed.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prosthetic group (PG) applications in 18F-radiochemistry play a pivotal role among current 18F-labeling techniques for the development and availability of 18F-labeled imaging probes for PET (Wahl, 2002) (1). The introduction and popularization of PGs in the mid-80s by pioneers in 18F-radiochemistry has profoundly changed the landscape of available tracers for PET and has led to a multitude of new imaging agents based on simple and efficiently synthesized PGs. Because of the chemical nature of anionic 18F- (apart from electrophilic low specific activity 18F-fluorine), radiochemistry before the introduction of PGs was limited to simple nucleophilic substitutions of leaving group containing precursor molecules. These precursors were not always available, and some target compounds were either hard to synthesize or not obtainable at all. Even with the advent of recently introduced "late-stage fluorination" techniques for the 18F-fluorination of deactivated aromatic systems, PGs will continue to play a central role in 18F-radiochemistry because of their robust and almost universal usability. The importance of PGs in radiochemistry is shown by its current significance in tracer development and exemplified by an overview of selected methodologies for PG attachment to PET tracer molecules. Especially, click-chemistry approaches to PG conjugation, while furthering the historical evolution of PGs in PET tracer design, play a most influential role in modern PG utilization. All earlier and recent multifaceted approaches in PG development have significantly enriched the contingent of modern 18F-radiochemistry procedures and will continue to do so.
Collapse
Affiliation(s)
- Ralf Schirrmacher
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada.
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Germany
| | - Justin Bailey
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Vadim Bernard-Gauthier
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Esther Schirrmacher
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Germany
| |
Collapse
|
11
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
12
|
Methods to Increase the Metabolic Stability of (18)F-Radiotracers. Molecules 2015; 20:16186-220. [PMID: 26404227 PMCID: PMC6332123 DOI: 10.3390/molecules200916186] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of 18F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [18F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.
Collapse
|
13
|
Kniess T, Laube M, Brust P, Steinbach J. 2-[18F]Fluoroethyl tosylate – a versatile tool for building18F-based radiotracers for positron emission tomography. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00303b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review highlights the role of 2-[18F]fluoroethyltosylate ([18F]FETs) in PET radiotracer design since it is a preferred labeling reagent according to its high reactivity to phenolic, amine, thiophenolic and carboxylic functions.
Collapse
Affiliation(s)
- Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| |
Collapse
|
14
|
Bernard-Gauthier V, Bailey JJ, Aliaga A, Kostikov A, Rosa-Neto P, Wuest M, Brodeur GM, Bedell BJ, Wuest F, Schirrmacher R. Development of subnanomolar radiofluorinated (2-pyrrolidin-1-yl)imidazo[1,2-b]pyridazine pan-Trk inhibitors as candidate PET imaging probes. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00388a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dysregulation of tropomyosin receptor kinases (TrkA/B/C) expression and signalling is recognized as a hallmark of numerous neurodegenerative diseases including Parkinson's, Huntington's and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Arturo Aliaga
- Translational Neuroimaging Laboratory
- McGill Centre for Studies in Aging
- Douglas Mental Health University Institute
- Montreal
- Canada
| | - Alexey Kostikov
- McConnell Brain Imaging Centre
- Montreal Neurological Institute
- McGill University
- Montreal
- Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory
- McGill Centre for Studies in Aging
- Douglas Mental Health University Institute
- Montreal
- Canada
| | - Melinda Wuest
- Department of Oncology
- University of Alberta
- Edmonton
- Canada
| | | | - Barry J. Bedell
- Biospective Inc
- Montreal
- Canada
- Research Institute of the McGill University Health Centre
- Montreal
| | - Frank Wuest
- Department of Oncology
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
15
|
Ermert J. 18F-labelled intermediates for radiosynthesis by modular build-up reactions: newer developments. BIOMED RESEARCH INTERNATIONAL 2014; 2014:812973. [PMID: 25343144 PMCID: PMC4197889 DOI: 10.1155/2014/812973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
This brief review gives an overview of newer developments in (18)F-chemistry with the focus on small (18)F-labelled molecules as intermediates for modular build-up syntheses. The short half-life (<2 h) of the radionuclide requires efficient syntheses of these intermediates considering that multistep syntheses are often time consuming and characterized by a loss of yield in each reaction step. Recent examples of improved synthesis of (18)F-labelled intermediates show new possibilities for no-carrier-added ring-fluorinated arenes, novel intermediates for tri[(18)F]fluoromethylation reactions, and (18)F-fluorovinylation methods.
Collapse
Affiliation(s)
- Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|