1
|
Kassab SE. A new computational cross-structure-activity relationship (C-SAR) approach applies to a selective HDAC6 inhibitor dataset for accelerated structure development. Comput Biol Med 2025; 192:110169. [PMID: 40311460 DOI: 10.1016/j.compbiomed.2025.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/03/2025]
Abstract
Several structure-activity relationship (SAR) methodologies have been developed for the research community to improve the potential activity of prototype structures. To accomplish this, Topliss proposed the Topliss tree and the Topliss Batchwise scheme for structure development. Structure development necessitates tactics beyond traditional SAR procedures when handling issues, such as rapid structural inactivation during development. SAR data is vital for altering chemical structures and addressing compound problems. Obtaining unique SAR data that provides strategic options for structure transformation relevant to every chemotype and not limited to a specific parent structure, as the Topliss approach does, is challenging. In this context, we present the C-SAR strategy, which addresses these issues and accelerates structural development. The C-SAR method provides insights into converting an inactive compound into an active one. We used cheminformatics and molecular docking tools to study a chemical library of diverse chemotypes targeting HDAC6, arranging it in matched molecular pairs (MMPs) with high structural activity landscape index (SALI) values of 820880 and a diversity index of 0.5827 and identifying C-SAR highlights based on repetitive pharmacophoric substitution patterns across different MMP chemotypes that resulted in activity cliffs. C-SAR is beneficial for SAR expansion when high-quality structural data are available to study a dataset of various MMPs from a specific class of compounds and allows using the obtained C-SAR highlights to design compounds of novel chemotypes beyond the investigated dataset. Data imputation using deep-learning predictive models may address the issue of data availability for C-SAR.
Collapse
Affiliation(s)
- Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, El-Buhaira, 22516, Damanhour, Egypt.
| |
Collapse
|
2
|
Da Silva MLR, De Albuquerque BHDR, Allyrio TADMF, De Almeida VD, Cobucci RNDO, Bezerra FL, Andrade VS, Lanza DCF, De Azevedo JCV, De Araújo JMG, Fernandes JV. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 2021; 15:60. [PMID: 34094536 PMCID: PMC8165754 DOI: 10.3892/br.2021.1436] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is associated with infection by certain types of human papillomaviruses (HPVs), and this affects women worldwide. Despite the improvements in prevention and cure of HPV-induced cervical cancer, it remains the second most common type of cancer in women in the least developed regions of the world. Epigenetic modifications are stable long-term changes that occur in the DNA, and are part of a natural evolutionary process of necessary adaptations to the environment. They do not result in changes in the DNA sequence, but do affect gene expression and genomic stability. Epigenetic changes are important in several biological processes. The effects of the environment on gene expression can contribute to the development of numerous diseases. Epigenetic modifications may serve a critical role in cancer cells, by silencing tumor suppressor genes, activating oncogenes, and exacerbating defects in DNA repair mechanisms. Although cervical cancer is directly related to a persistent high-risk HPV infection, several epigenetic changes have been identified in both the viral DNA and the genome of the infected cells: DNA methylation, histone modification and gene silencing by non-coding RNAs, which initiate and sustain epigenetic changes. In the present review, recent advances in the role of epigenetic changes in cervical cancer are summarized.
Collapse
Affiliation(s)
- Martha Laysla Ramos Da Silva
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | | | - Valéria Duarte De Almeida
- Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoro 59607-360, Brazil
| | | | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
3
|
Gawel JM, Shouksmith AE, Raouf YS, Nawar N, Toutah K, Bukhari S, Manaswiyoungkul P, Olaoye OO, Israelian J, Radu TB, Cabral AD, Sina D, Sedighi A, de Araujo ED, Gunning PT. PTG-0861: A novel HDAC6-selective inhibitor as a therapeutic strategy in acute myeloid leukaemia. Eur J Med Chem 2020; 201:112411. [PMID: 32615502 DOI: 10.1016/j.ejmech.2020.112411] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Dysregulated Histone Deacetylase (HDAC) activity across multiple human pathologies have highlighted this family of epigenetic enzymes as critical druggable targets, amenable to small molecule intervention. While efficacious, current approaches using non-selective HDAC inhibitors (HDACi) have been shown to cause a range of undesirable clinical toxicities. To circumvent this, recent efforts have focused on the design of highly selective HDACi as a novel therapeutic strategy. Beyond roles in regulating transcription, the unique HDAC6 (with two catalytic domains) regulates the deacetylation of α-tubulin; promoting growth factor-controlled cell motility, cell division, and metastatic hallmarks. Recent studies have linked aberrant HDAC6 function in various hematological cancers including acute myeloid leukaemia and multiple myeloma. Herein, we report the discovery, in vitro characterization, and biological evaluation of PTG-0861 (JG-265), a novel HDAC6-selective inhibitor with strong isozyme-selectivity (∼36× ) and low nanomolar potency (IC50 = 5.92 nM) against HDAC6. This selectivity profile was rationalized via in silico docking studies and also observed in cellulo through cellular target engagement. Moreover, PTG-0861 achieved relevant potency against several blood cancer cell lines (e.g. MV4-11, MM1S), whilst showing limited cytotoxicity against non-malignant cells (e.g. NHF, HUVEC) and CD-1 mice. In examining compound stability and cellular permeability, PTG-0861 revealed a promising in vitro pharmacokinetic (PK) profile. Altogether, in this study we identified a novel and potent HDAC6-selective inhibitor (∼4× more selective than current clinical standards - citarinostat, ricolinostat), which achieves cellular target engagement, efficacy in hematological cancer cells with a promising safety profile and in vitro PK.
Collapse
Affiliation(s)
- Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Andrew E Shouksmith
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Diana Sina
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359, Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
4
|
Breunig M, Yuan P, Gaich T. An Unexpected Transannular [4+2] Cycloaddition during the Total Synthesis of (+)-Norcembrene 5. Angew Chem Int Ed Engl 2020; 59:5521-5525. [PMID: 31750980 PMCID: PMC7155007 DOI: 10.1002/anie.201912613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Indexed: 11/26/2022]
Abstract
We report a concise and versatile total synthesis of the diterpenoid (+)-norcembrene 5 from simple building blocks. Ring-closing metathesis and an auxiliary-directed 1,4-addition are the key steps of our synthetic route. During the synthesis, an unprecedented, highly oxidized pentacyclic structural motif was established from a furanocembranoid through transannular [4+2] cycloaddition.
Collapse
Affiliation(s)
- Michael Breunig
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Po Yuan
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Tanja Gaich
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
5
|
Breunig M, Yuan P, Gaich T. Eine unerwartete transanulare [4+2]‐Cycloaddition während der Gesamtsynthese von (+)‐Norcembren 5. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Breunig
- Fachbereich Chemie Universität Konstanz Universitätsstraße 10 78464 Konstanz Deutschland
| | - Po Yuan
- Fachbereich Chemie Universität Konstanz Universitätsstraße 10 78464 Konstanz Deutschland
| | - Tanja Gaich
- Fachbereich Chemie Universität Konstanz Universitätsstraße 10 78464 Konstanz Deutschland
| |
Collapse
|
6
|
Debnath S, Debnath T, Bhaumik S, Majumdar S, Kalle AM, Aparna V. Discovery of novel potential selective HDAC8 inhibitors by combine ligand-based, structure-based virtual screening and in-vitro biological evaluation. Sci Rep 2019; 9:17174. [PMID: 31748509 PMCID: PMC6868012 DOI: 10.1038/s41598-019-53376-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in children and survival rate is extremely meager. HDAC8, a class I zinc-dependent enzyme, is a potential drug target for treatment of neuroblastoma and T cell lymphoma. Most of the HDAC8 inhibitors discovered till date contains a hydroxamic acid group which acts as a zinc binding group. The high binding affinity to the zinc and other ions results in adverse effects. Also, the non-selective inhibition of HDACs cause a variety of side effects. The objective of this is to identify structurally diverse, non-hydroxamate, novel, potential and selective HDAC8 inhibitors. A number of five featured pharmacophore hypotheses were generated using 32 known selective HDAC8 inhibitors. The hypotheses ADDRR.4 were selected for building 3D QSAR model. This model has an excellent correlation coefficient and good predictive ability, which was employed for virtual screening of Phase database containing 4.3 × 106 molecules. The resultant hits with fitness score >1.0 were optimized using in-silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) and XP glide docking studies. On the basis of pharmacophore matching, interacting amino acid residues, XP glide score, more affinity towards HDAC8 and less affinity towards other HDACs, and ADME results five hits- SD-01, SD-02, SD-03, SD-04 and SD-05 with new structural scaffolds, non-hydroxamate were selected for in vitro activity study. SD-01 and SD-02 were found to be active in the nanomolar (nM) range. SD-01 had considerably good selectivity for HDAC8 over HDAC6 and SD-02 had marginal selectivity for HDAC6 over HDAC8. The compounds SD-01 and SD-02 were found to inhibit HDAC8 at concentrations (IC50) 9.0 nM and 2.7 nM, respectively.
Collapse
Affiliation(s)
- Sudhan Debnath
- Department of Chemistry, MBB College, Agartala, Tripura, 799004, India.
| | - Tanusree Debnath
- Department of Chemistry, MBB College, Agartala, Tripura, 799004, India
| | - Samhita Bhaumik
- Department of Chemistry, Women's College, Agartala, Tripura, 799001, India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799022, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS, 500046, India
| | - Vema Aparna
- Sree Chaitanya Institute of Pharmaceutical Sciences, Karimnagar, 505 527, Andhra Pradesh, India
| |
Collapse
|
7
|
YADAV R, MISHRA P, YADAV D. Histone Deacetylase Inhibitors: A Prospect in Drug Discovery. Turk J Pharm Sci 2019; 16:101-114. [PMID: 32454703 PMCID: PMC7227979 DOI: 10.4274/tjps.75047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Cancer is a provocative issue across the globe and treatment of uncontrolled cell growth follows a deep investigation in the field of drug discovery. Therefore, there is a crucial requirement for discovering an ingenious medicinally active agent that can amend idle drug targets. Increasing pragmatic evidence implies that histone deacetylases (HDACs) are trapped during cancer progression, which increases deacetylation and triggers changes in malignancy. They provide a ground-breaking scaffold and an attainable key for investigating chemical entity pertinent to HDAC biology as a therapeutic target in the drug discovery context. Due to gene expression, an impending requirement to prudently transfer cytotoxicity to cancerous cells, HDAC inhibitors may be developed as anticancer agents. The present review focuses on the basics of HDAC enzymes, their inhibitors, and therapeutic outcomes.
Collapse
Affiliation(s)
- Rakesh YADAV
- Banasthali University, Faculty of Pharmacy, Department of Pharmacy, Banasthali, India
| | - Pooja MISHRA
- Banasthali University, Faculty of Pharmacy, Department of Pharmacy, Banasthali, India
| | - Divya YADAV
- Banasthali University, Faculty of Pharmacy, Department of Pharmacy, Banasthali, India
| |
Collapse
|
8
|
Yang J, Cheng G, Xu Q, Luan S, Wang S, Liu D, Zhao L. Design, synthesis and biological evaluation of novel hydroxamic acid based histone deacetylase 6 selective inhibitors bearing phenylpyrazol scaffold as surface recognition motif. Bioorg Med Chem 2018; 26:1418-1425. [DOI: 10.1016/j.bmc.2017.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
|
9
|
Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM, Ni N. Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives. EXCLI JOURNAL 2017; 16:1114-1131. [PMID: 29285008 PMCID: PMC5735336 DOI: 10.17179/excli2017-208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
A new series of thiazolylcoumarin derivatives was synthesized. The designed strategy embraced a molecular hybridization approach which involves the combination of the thiazole and coumarin pharmacophores together. The new hybrid compounds were tested for in vitro antitumor efficacy over cervical (Hela) and kidney fibroblast (COS-7) cancer cells. Compounds 5f, 5h, 5m and 5r displayed promising efficacy toward Hela cell line. In addition, 5h and 5r were found to be the most active candidates toward COS-7 cell line. The four active analogs, 5f, 5h, 5m and 5r were screened for in vivo antitumor activity over EAC cells in mice, as well as in vitro cytotoxicity toward W138 normal cells. Results illustrated that 5r has the highest in vivo activity, and that the four analogs are less cytotoxic than 5-FU toward W138 normal cells. In this study, 3D pharmacophore analysis was performed to investigate the matching pharmacophoric features of the synthesized compounds with trichostatin A. In silico studies showed that the investigated compounds meet the optimal needs for good oral absorption with no expected toxicity hazards.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eman R El-Bendary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed M El-Kerdawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nanting Ni
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
10
|
Qin HT, Li HQ, Liu F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin Ther Pat 2016; 27:621-636. [PMID: 28033734 DOI: 10.1080/13543776.2017.1276565] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Since the first pan-HDAC inhibitor SAHA was approved by U.S. FDA 10 years ago, HDACs including SIRT1-7 have received significant attention due to the fact that aberrant histone deacetylase activtiy has been implicated in a variety of human diseases, such as cancers, virus infection, and neurodegenerative diseases. During the past years, a considerable achievement of development of isoform- or class-selective HDAC inhibitors has been made, yielding many drug candidates for further clinical studies, which represents a state-of-the-art technology in the drug discovery arena. Areas covered: This review covers new patents and articles about isoform- or class-selective HDAC inhibitors during the last four years, as well as the therapeutic potential of these compounds. Expert opinion: HDACs represent one of the most promising therapeutic targets, particularly for tumor therapy though their roles in cancer are still blurry. From 2012 to present, along with the advances of structural biology and homology models, lots of isoform- or class-selective HDAC inhibitors, such as hydroxamic acids and benzamides with various capping groups were found, providing a promising way to circumvent drug toxicity and side-effect issues, as well as providing chemical probes for further better understanding of the biological process related to specific isoform.
Collapse
Affiliation(s)
- Hai-Tao Qin
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry , College of Pharmaceutical Sciences, Soochow University , Suzhou , PR China
| | - Huan-Qiu Li
- b Department of Medicinal Chemistry , College of Pharmaceutical Sciences, Soochow University , Suzhou , PR China
| | - Feng Liu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry , College of Pharmaceutical Sciences, Soochow University , Suzhou , PR China
| |
Collapse
|
11
|
Manal M, Chandrasekar M, Gomathi Priya J, Nanjan M. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg Chem 2016; 67:18-42. [DOI: 10.1016/j.bioorg.2016.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 12/11/2022]
|
12
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
13
|
Ballante F, Marshall GR. An Automated Strategy for Binding-Pose Selection and Docking Assessment in Structure-Based Drug Design. J Chem Inf Model 2016; 56:54-72. [PMID: 26682916 DOI: 10.1021/acs.jcim.5b00603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.
Collapse
Affiliation(s)
- Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Noor Z, Afzal N, Rashid S. Exploration of Novel Inhibitors for Class I Histone Deacetylase Isoforms by QSAR Modeling and Molecular Dynamics Simulation Assays. PLoS One 2015; 10:e0139588. [PMID: 26431201 PMCID: PMC4592208 DOI: 10.1371/journal.pone.0139588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylases (HDAC) are metal-dependent enzymes and considered as important targets for cell functioning. Particularly, higher expression of class I HDACs is common in the onset of multiple malignancies which results in deregulation of many target genes involved in cell growth, differentiation and survival. Although substantial attempts have been made to control the irregular functioning of HDACs by employing various inhibitors with high sensitivity towards transformed cells, limited success has been achieved in epigenetic cancer therapy. Here in this study, we used ligand-based pharmacophore and 2-dimensional quantitative structure activity relationship (QSAR) modeling approaches for targeting class I HDAC isoforms. Pharmacophore models were generated by taking into account the known IC50 values and experimental energy scores with extensive validations. The QSAR model having an external R2 value of 0.93 was employed for virtual screening of compound libraries. 10 potential lead compounds (C1-C10) were short-listed having strong binding affinities for HDACs, out of which 2 compounds (C8 and C9) were able to interact with all members of class I HDACs. The potential binding modes of HDAC2 and HDAC8 to C8 were explored through molecular dynamics simulations. Overall, bioactivity and ligand efficiency (binding energy/non-hydrogen atoms) profiles suggested that proposed hits may be more effective inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Zainab Noor
- National Center for Bioinformatics, Quaid I Azam University, Islamabad, Pakistan
| | - Noreen Afzal
- National Center for Bioinformatics, Quaid I Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid I Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014; 9:523-6. [PMID: 24730063 DOI: 10.1002/cmdc.201300413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be “pan”-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.
Collapse
|
16
|
Dhanak D, Jackson P. Development and classes of epigenetic drugs for cancer. Biochem Biophys Res Commun 2014; 455:58-69. [PMID: 25016182 DOI: 10.1016/j.bbrc.2014.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidence supports an important, etiologic role for epigenetic modifications in cancer. Various post translational modifications of histone proteins together with DNA methylation constitute an 'epigenetic code' regulating the transcriptional status of the cell and aberrant writing and/or interpretation of the code can contribute to a dysregulated, hyperproliferative state. In some cases, epigenetic deregulation has also been reported to result in tumor initiation. The discovery of somatic mutations in some chromatin binding proteins associated with subtypes of lymphomas and the ability to regulate expression of proto oncogenes such as Myc has spurred the development of specific small molecule modulators of histone binding proteins. Several of these compounds have entered clinical development for the treatment of heme malignancies. This review summarizes progress in the discovery and advancement of epigenetic therapeutics for cancer and provides a perspective for future development.
Collapse
Affiliation(s)
- Dashyant Dhanak
- Discovery Sciences, Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Paul Jackson
- Discovery Sciences, Janssen Pharmaceuticals, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
17
|
Zhang S, Huang WB, Wu L, Wang LY, Ye LB, Feng BH. A Novel Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivative, N25, Exhibiting Improved Antitumor Activity in both Human U251 and H460 Cells. Asian Pac J Cancer Prev 2014; 15:4331-8. [DOI: 10.7314/apjcp.2014.15.10.4331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|