1
|
Becker J, Effraim PR, Dib-Hajj S, Rittner HL. Lessons learned in translating pain knowledge into practice. Pain Rep 2023; 8:e1100. [PMID: 37928204 PMCID: PMC10624476 DOI: 10.1097/pr9.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction During the past 2 decades, basic research deciphering the underlying mechanisms of nociception and chronic pain was thought to finally step beyond opioids and nonsteroidals and provide patients with new analgesics. But apart from calcitonin gene-related peptide antagonists, nothing arrived in hands of clinicians. Objectives To present existing evidence of 3 representative target molecules in the development of novel pain treatment that, so far, did not result in approved drugs. Methods This Clinical Update aligns with the 2022 IASP Global Year Translating Pain Knowledge into Practice and selectively reviews best available evidence and practice. Results We highlight 3 targets: a ion channel, a neuronal growth factor, and a neuropeptide to explore why these drug targets have been dropped in clinical phase II-III trials. Antibodies to nerve growth factor had very good effects in musculoskeletal pain but resulted into more patients requiring joint replacements. Blockers of NaV1.7 were often not effective enough-at least if patients were not stratified. Blockers of neurokinin receptor were similarly not successful enough. In general, failure was most often to the result of a lack of effect and to a lesser extend because of unexpected severe side effects. However, all studies and trials lead to an enormous move in the scientific community to better preclinical models and testing as well as revised methods to molecularly phenotype and stratify patients. Conclusion All stakeholders in the process can help in the future: better preclinical studies, phenotyping and stratifying patients, and participation in clinical trials to move the discovery of analgesics forward.
Collapse
Affiliation(s)
- Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philip R. Effraim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Pospelov EV, Sukhorukov AY. Building Up a Piperazine Ring from a Primary Amino Group via Catalytic Reductive Cyclization of Dioximes. Int J Mol Sci 2023; 24:11794. [PMID: 37511552 PMCID: PMC10380651 DOI: 10.3390/ijms241411794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Piperazine is one of the most frequently found scaffolds in small-molecule FDA-approved drugs. In this study, a general approach to the synthesis of piperazines bearing substituents at carbon and nitrogen atoms utilizing primary amines and nitrosoalkenes as synthons was developed. The method relies on sequential double Michael addition of nitrosoalkenes to amines to give bis(oximinoalkyl)amines, followed by stereoselective catalytic reductive cyclization of the oxime groups. The method that we developed allows a straightforward structural modification of bioactive molecules (e.g., α-amino acids) by the conversion of a primary amino group into a piperazine ring.
Collapse
Affiliation(s)
- Evgeny V Pospelov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| |
Collapse
|
3
|
Martins MS, Almeida IF, Cruz MT, Sousa E. Chronic pruritus: from pathophysiology to drug design. Biochem Pharmacol 2023; 212:115568. [PMID: 37116666 DOI: 10.1016/j.bcp.2023.115568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Pruritus, the most common symptom in dermatology, is an innate response capable of protecting skin against irritants. Nonetheless, when it lasts more than six weeks it is assumed to be a chronic pathology having a negative impact on people's lives. Chronic pruritus (CP) can occur in common and rare skin diseases, having a high prevalence in global population. The existing therapies are unable to counteract CP or are associated with adverse effects, so the development of effective treatments is a pressing issue. The pathophysiological mechanisms underlying CP are not yet completely dissected but, based on current knowledge, involve a wide range of receptors, namely neurokinin 1 receptor (NK1R), Janus kinase (JAK), and transient receptor potential (TRP) ion channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1). This review will address the relevance of these molecular targets for the treatment of CP and molecules capable of modulating these receptors that have already been studied clinically or have the potential to possibly alleviate this pathology. According to scientific and clinical literature, there is an increase in the expression of these molecular targets in the lesioned skin of patients experiencing CP when compared with non-lesioned skin, highlighting their importance for the development of potential efficacious drugs through the design of antagonists/inhibitors.
Collapse
Affiliation(s)
- Márcia S Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isaobel F Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Emília Sousa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Abstract
Pruritus, commonly known as itch, is a very common symptom in numerous dermatological disorders and systemic diseases. It can manifest as acute, or when lasting longer than 6 weeks, it is considered chronic and can lead to significant distress and reduced quality-of-life of those suffering. Current therapeutics are limited and are lacking in efficacy, and the development of more effective treatments is needed. The neurokinin 1 receptor (NK1R) antagonists are a novel class of drugs that possess several properties such as antidepressant, anxiolytic and antiemetic activities. Recently, several studies have described the antipruritic activity of NK1R antagonists for treating chronic pruritus. In this review we outline the pathogenesis of chronic pruritus, the mechanism by which the neuropeptide substance P (SP) and its receptor NK1R may be targeted to inhibit pruritic activity, and the efficacy and tolerability of NK1R antagonists, which have been, or are currently being investigated for treating conditions where chronic pruritus is a major symptom. Increasing evidence from ongoing and completed studies demonstrates the importance of SP and NK1R signalling in mediating pruritic activity. Several NK1R antagonists have shown significant antipruritic activity and thus targeting the SP-NK1R pathway may provide a therapeutic option for treating chronic pruritus of certain origin/s in the foreseeable future.
Collapse
|
5
|
Werner FM, Coveñas R. Therapeutic Effect of Novel Antidepressant Drugs Acting at Specific Receptors of Neurotransmitters and Neuropeptides. Curr Pharm Des 2020; 25:388-395. [PMID: 30969164 DOI: 10.2174/1381612825666190410165243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Major depression is a frequent psychiatric disease. One- third of the depressive patients remain treatment-resistant; thus, it is urgent to find novel antidepressant drugs. OBJECTIVE In major depression, in several brain areas the neural networks involved and the alterations of neurotransmitters and neuropeptides are updated. According to these networks, new pharmacological agents and effective combinations of antidepressant drugs achieving a more efficacious antidepressant treatment are suggested. RESULTS In the neural networks, the prefrontal cortex has been included. In this brain area, glutamatergic neurons, which receive an activating potential from D2 dopaminergic neurons, presynaptically inhibit M1 muscarinic cholinergic neurons via NMDA receptors. Medium spiny GABAergic/somatostatin neurons, which receive projections from M1 muscarinic cholinergic neurons, presynaptically inhibit D2 dopaminergic neurons via GABAA/somatostatin1 receptors. The combination of an NMDA receptor antagonist with an M1 muscarinic cholinergic receptor antagonist can achive a rapid, long-lasting antidepressant effect. CONCLUSION In preclinical studies, the antidepressant effect of orvepitant, an NK1 receptor antagonist, has been demonstrated: this antagonist reaches a complete blockade of NK1 receptors. In clinical studies, the combination of an NMDA receptor antagonist with an M1 muscarinic cholinergic receptor antagonist should be investigated indepth as well as the therapeutic effect of orvepitant. In clinical studies, the antidepressant effect of a triple reuptake inhibitor should be examined and compared to current antidepressant drugs.
Collapse
Affiliation(s)
- Felix-Martin Werner
- Höhere Berufsfachschule für Altenpflege und Ergotherapie der Euro Akademie Pößneck, Pößneck, Germany.,Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Vincenzi B, Trower M, Duggal A, Guglielmini P, Harris P, Jackson D, Lacouture ME, Ratti E, Tonini G, Wood A, Ständer S. Neurokinin-1 antagonist orvepitant for EGFRI-induced pruritus in patients with cancer: a randomised, placebo-controlled phase II trial. BMJ Open 2020; 10:e030114. [PMID: 32034016 PMCID: PMC7045265 DOI: 10.1136/bmjopen-2019-030114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of orvepitant (10 or 30 mg given once daily, orally for 4 weeks), a neurokinin-1 receptor antagonist, compared with placebo in reducing the intensity of epidermal growth factor receptor inhibitor (EGFRI)-induced intense pruritus. DESIGN Randomised, double-blind, placebo-controlled clinical trial. SETTING 15 hospitals in Italy and five hospitals in the UK. PARTICIPANTS 44 patients aged ≥18 years receiving an EGFRI for a histologically confirmed malignant solid tumour and experiencing moderate or intense pruritus after EGFRI treatment. INTERVENTION 30 or 10 mg orvepitant or placebo tablets once daily for 4 weeks (randomised 1:1:1). PRIMARY AND SECONDARY OUTCOME MEASURES The primary endpoint was change from baseline in mean patient-recorded numerical rating scale (NRS) score (over the last three recordings) at week 4. Secondary outcome measures were NRS score, verbal rating scale score, Skindex-16 and Leeds Sleep Evaluation Questionnaire at each study visit (baseline, weeks 1, 4, 8); rescue medication use; EGFRI dose reduction; and study withdrawal because of intense uncontrolled pruritus. RESULTS The trial was terminated early because of recruitment challenges; only 44 of the planned 90 patients were randomised. All patients were analysed for efficacy and safety. Mean NRS score change from baseline to week 4 was -2.78 (SD: 2.64) points in the 30 mg group, -3.04 (SD: 3.06) points in the 10 mg group and -3.21 (SD: 1.77) points in the placebo group; the difference between orvepitant and placebo was not statistically significant. No safety signal was detected. Adverse events related to orvepitant (asthenia, dizziness, dry mouth, hyperhidrosis) were all of mild or moderate severity. CONCLUSIONS Orvepitant was safe and well tolerated. No difference in NRS score between the orvepitant and placebo groups was observed at the week 4 primary endpoint. A number of explanations for this outcome are possible. TRIAL REGISTRATION NUMBER EudraCT2013-002763-25.
Collapse
Affiliation(s)
- Bruno Vincenzi
- Medical Oncology, Universita Campus Bio-Medico di Roma Facolta di Medicina e Chirurgia, Roma, Italy
| | | | - Ajay Duggal
- Adnovate Clinical Development Strategies, East Sussex, UK
| | | | | | | | - Mario E Lacouture
- Department of Dermatology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Giuseppe Tonini
- Medical Oncology, Universita Campus Bio-Medico di Roma Facolta di Medicina e Chirurgia, Roma, Italy
| | | | - Sonja Ständer
- Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| |
Collapse
|
7
|
Ma Y, Yao X, Zhang L, Ni P, Cheng R, Ye J. Direct Arylation of α‐Amino C(sp
3
)‐H Bonds by Convergent Paired Electrolysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process ChemistryMinistry of EducationShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xiantong Yao
- Engineering Research Centre of Pharmaceutical Process ChemistryMinistry of EducationShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process ChemistryMinistry of EducationShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Pufan Ni
- Engineering Research Centre of Pharmaceutical Process ChemistryMinistry of EducationShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ruihua Cheng
- School of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process ChemistryMinistry of EducationShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
8
|
Ma Y, Yao X, Zhang L, Ni P, Cheng R, Ye J. Direct Arylation of α-Amino C(sp 3 )-H Bonds by Convergent Paired Electrolysis. Angew Chem Int Ed Engl 2019; 58:16548-16552. [PMID: 31508880 DOI: 10.1002/anie.201909642] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/25/2019] [Indexed: 11/08/2022]
Abstract
A metal-free convergent paired electrolysis strategy to synthesize benzylic amines through direct arylation of tertiary amines and benzonitrile derivatives at room temperature has been developed. This TEMPO-mediated electrocatalytic reaction makes full use of both anodic oxidation and cathodic reduction without metals or stoichiometric oxidants, thus showing great potential and advantages for practical synthesis. This convergent paired electrolysis method provides a straightforward and powerful means to activate C-H bonds and realize cross-coupling with cathodically generated species.
Collapse
Affiliation(s)
- Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiantong Yao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pufan Ni
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
9
|
Pojawa-Gołąb M, Jaworecka K, Reich A. NK-1 Receptor Antagonists and Pruritus: Review of Current Literature. Dermatol Ther (Heidelb) 2019; 9:391-405. [PMID: 31190215 PMCID: PMC6704190 DOI: 10.1007/s13555-019-0305-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
The discovery of the first neurokinin 1 (NK-1) receptor antagonist was a turning point in the prevention of chemotherapy-induced nausea and vomiting. The NK-1 antagonists are a novel class of drugs that possess antidepressant, anxiolytic, and antiemetic properties. Recently, clinicians have also described an anti-itch activity of NK-1 antagonists. We present herein results from currently available data on use of NK-1R antagonists in dermatology. For this purpose, a systemic electronic literature search of the PubMed and CINAHL databases, Cochrane Library, and clinicaltrials.gov website was performed. Based on currently available data, it can be concluded that NK-1 inhibitors show significant antipruritic potential for treatment of chronic pruritus in different dermatological conditions, but further studies are needed to establish the best indications and dosage of these drugs.
Collapse
Affiliation(s)
| | - Kamila Jaworecka
- Department of Dermatology, University of Rzeszów, Rzeszów, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszów, Rzeszów, Poland.
| |
Collapse
|
10
|
Smith J, Allman D, Badri H, Miller R, Morris J, Satia I, Wood A, K Trower M. The Neurokinin-1 Receptor Antagonist Orvepitant Is a Novel Antitussive Therapy for Chronic Refractory Cough: Results From a Phase 2 Pilot Study (VOLCANO-1). Chest 2019; 157:111-118. [PMID: 31421110 DOI: 10.1016/j.chest.2019.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Substance P and the neurokinin-1 (NK-1) receptor are implicated in chronic refractory cough pathophysiology. We assessed the efficacy and safety of orvepitant, a brain-penetrant NK-1 antagonist, in an open-label study in CRC patients with chronic refractory cough. METHODS Thirteen patients with daytime cough frequency >3 to <250 coughs/h took orvepitant 30 mg once daily for 4 weeks. Objective cough frequency was measured over 24 h at baseline and weeks 1, 4, and 8. The primary end point was change from Baseline in daytime cough frequency at week 4. Secondary end points included cough severity visual analog scale (VAS) score, global ratings of change for cough frequency and severity, and Cough-specific Quality of Life Questionnaire score. RESULTS All patients completed the study. Mean baseline cough frequency was 71.4/h. A statistically and clinically significant improvement in objective daytime cough frequency was observed at week 4: reduction from baseline of 18.9 (26%) coughs/h (95% CI, 9.6-28.3; P < .001). This effect was apparent at week 1 (reduction from baseline of 27.0 [38%] coughs/h [95% CI, 11.4-42.7; P = .001]) and sustained after drug discontinuation at week 8 (reduction from baseline of 20.4 [29%] coughs/h [95% CI, 3.2-37.5; P = .020]). Statistically significant improvements were seen for severity VAS and quality of life. Orvepitant was safe and well-tolerated. CONCLUSIONS Orvepitant resulted in a significant and sustained improvement in objective cough frequency, severity VAS, and quality of life; appeared safe; and merits further clinical investigation. TRIAL REGISTRY EU Clinical Trials Register; No.: 2014-003947-36; URL: www.clinicaltrialsregister.eu.
Collapse
Affiliation(s)
- Jaclyn Smith
- Division of Infection Immunity and Respiratory Medicine, University of Manchester, Manchester, England; Manchester University NHS Foundation Trust, Manchester, England.
| | | | - Huda Badri
- Division of Infection Immunity and Respiratory Medicine, University of Manchester, Manchester, England; North Manchester General Hospital, Pennine Acute NHS Trust, Manchester, England
| | | | - Julie Morris
- Division of Infection Immunity and Respiratory Medicine, University of Manchester, Manchester, England; Manchester University NHS Foundation Trust, Manchester, England
| | - Imran Satia
- Division of Infection Immunity and Respiratory Medicine, University of Manchester, Manchester, England; Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
11
|
Nederpelt I, Kuzikov M, de Witte WEA, Schnider P, Tuijt B, Gul S, IJzerman AP, de Lange ECM, Heitman LH. From receptor binding kinetics to signal transduction; a missing link in predicting in vivo drug-action. Sci Rep 2017; 7:14169. [PMID: 29075004 PMCID: PMC5658448 DOI: 10.1038/s41598-017-14257-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022] Open
Abstract
An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system. We demonstrated that the binding kinetics of both antagonists (DFA and aprepitant) and endogenous agonists (NKA and SP) have significantly different effects on signal transduction profiles, i.e. potency values, in vitro efficacy values and onset rate of signal transduction. The antagonistic effects were most efficacious with slowly dissociating aprepitant and slowly associating NKA while the combination of rapidly dissociating DFA and rapidly associating SP had less significant effects on the signal transduction profiles. These results were consistent throughout different kinetic assays and cellular backgrounds. We conclude that knowledge of the relationship between in vitro drug-target binding kinetics and cellular responses is important to ultimately improve the understanding of drug efficacy in vivo.
Collapse
Affiliation(s)
- Indira Nederpelt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Maria Kuzikov
- Fraunhofer IME Screening Port, Schnackenburgallee 114, D-22525, Hamburg, Germany
| | - Wilbert E A de Witte
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Patrick Schnider
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Bruno Tuijt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Sheraz Gul
- Fraunhofer IME Screening Port, Schnackenburgallee 114, D-22525, Hamburg, Germany
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Kanduluru AK, Low PS. Development of a Ligand-Targeted Therapeutic Agent for Neurokinin-1 Receptor Expressing Cancers. Mol Pharm 2017; 14:3859-3865. [PMID: 28969417 DOI: 10.1021/acs.molpharmaceut.7b00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ananda Kumar Kanduluru
- Department of Chemistry and
Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Department of Chemistry and
Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
14
|
Kanduluru AK, Srinivasarao M, Low PS. Design, Synthesis, and Evaluation of a Neurokinin-1 Receptor-Targeted Near-IR Dye for Fluorescence-Guided Surgery of Neuroendocrine Cancers. Bioconjug Chem 2016; 27:2157-65. [PMID: 27529726 PMCID: PMC5343518 DOI: 10.1021/acs.bioconjchem.6b00374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurokinin-1 receptor (NK1R) is implicated in the growth and metastasis of many tumors, including cancers of the brain (e.g., gliomas, glioblastomas, and astrocytomas), skin (e.g., melanomas), and neuroendocrine tissues (cancers of the breast, stomach, pancreas, larynx, and colon). Because overexpression of NK1R has been reported in most of these malignancies, we have undertaken designing an NK1R-targeted near-infrared (NIR) fluorescent dye for fluorescence-guided surgeries of these cancers. We demonstrate here that an NK1R-binding ligand linked to the NIR dye LS288 selectively accumulates in NK1R-expressing tumor xenografts with high affinity (Kd = 13 nM), allowing intraoperative imaging of these cancers in live mice. Because tumor accumulation is nearly quantitatively blocked by excess unlabeled ligand, and because NK1R-negative tumors and normal tissues display virtually no uptake, we conclude that the observed tumor retention is NK1R-mediated. Results on the synthesis, in vitro characterization, and animal testing of NK1R-targeted NIR dye are presented.
Collapse
Affiliation(s)
- Ananda Kumar Kanduluru
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Trower MK, Fisher A, Upton N, Ratti E. Neurokinin-1 receptor antagonist orvepitant is an effective inhibitor of itch-associated response in a Mongolian gerbil model of scratching behaviour. Exp Dermatol 2015; 23:858-60. [PMID: 25078633 DOI: 10.1111/exd.12528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
Data suggest that substance P could play an important role in pruritus, and therefore, blockade of the neurokinin (NK)-1 receptor might be antipruritic. Thus, we explored in the Mongolian gerbil the effect on scratching behaviour, induced by intra-dermal injection of the NK-1 receptor-specific agonist GR73632, of oral administration of the NK-1 receptor antagonist orvepitant. Orvepitant at all doses tested (0.1-10 mg/kg p.o.) produced a profound inhibition of GR73632 (30 nmol i.d.) induced hindlimb scratching; the minimum effective dose of orvepitant in this model was identified as ≤0.1 mg/kg. The data generated supported the proposition that the antipruritic potential of orvepitant should be evaluated in clinical trials.
Collapse
Affiliation(s)
- Michael K Trower
- NeRRe Therapeutics Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | | | | | | |
Collapse
|
16
|
Krautscheid Y, Senning CJÅ, Sartori SB, Singewald N, Schuster D, Stuppner H. Pharmacophore modeling, virtual screening, and in vitro testing reveal haloperidol, eprazinone, and fenbutrazate as neurokinin receptors ligands. J Chem Inf Model 2014; 54:1747-57. [PMID: 24849814 DOI: 10.1021/ci500106z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurokinin receptors (NKRs) have been shown to be involved in many physiological processes, rendering them promising novel drug targets, but also making them the possible cause for side effects of several drugs. Aiming to answer the question whether the binding to NKRs could have a share in the side effects or even the desired effects of already licensed drugs, we generated a set of ligand-based common feature pharmacophore models based on the structural information about subtype-selective and nonselective NKR antagonists and screened an in-house database mainly composed of licensed drugs. The prospective pharmacological investigations of the virtual hits haloperidol, eprazinone, and fenbutrazate confirmed them to be NKR ligands in vitro. By the identification of licensed drugs as so far unknown NKR ligands, this study contributes to establishing an activity profile of the investigated compounds and confirms the presented pharmacophore models as useful tools for this purpose.
Collapse
Affiliation(s)
- Yvonne Krautscheid
- Institute of Pharmacy/Pharmacognosy, ‡Institute of Pharmacy/Pharmaceutical Chemistry/CAMD Group, §Institute of Pharmacy/Pharmacology and Toxicology, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI) , Center for Chemistry and Biomedicine (CCB), Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|