1
|
Handke M, Beierlein F, Imhof P, Schiedel M, Hammann S. New fluorogenic triacylglycerols as sensors for dynamic measurement of lipid oxidation. Anal Bioanal Chem 2025; 417:287-296. [PMID: 39570389 PMCID: PMC11698881 DOI: 10.1007/s00216-024-05642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Lipids are major constituents of food but are also highly relevant substructures of drugs and are increasingly applied for the development of lipid-based drug delivery systems. Lipids are prone to oxidative degradation, thus affecting the quality of food or medicines. Therefore, analytical methods or tools that enable the degree of lipid oxidation to be assessed are of utmost importance to guarantee food and drug safety. Herein, we report the design, synthesis and application of the first-in-class fluorogenic triacylglycerols that enable dynamic monitoring of lipid oxidation via straightforward fluorescence readout. Our fluorogenic triacylglycerols can be used in both aqueous and lipid-based environments. Furthermore, we showed that the sensitivity of our fluorescent tracers towards oxidation could be tuned by incorporating either saturated or unsaturated acyl chains in their triacylglycerol core structure. With this, we provide a first proof of principle for the applicability of fluorescently labelled triacylglycerols as tracers to monitor the dynamics of lipid oxidation, thus paving the way for novel discoveries in the area of lipid analytics.
Collapse
Affiliation(s)
- Maria Handke
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058, Germany
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
| | - Frank Beierlein
- Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen, 91052, Germany
- Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU), Martensstraße 1, Erlangen, 91058, Germany
| | - Petra Imhof
- Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen, 91052, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058, Germany.
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany.
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058, Germany.
- FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, Erlangen, 91058, Germany.
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, Stuttgart, 70599, Germany.
| |
Collapse
|
2
|
Li X, Yin Z, Yan W, Wang M, Chang C, Guo C, Xue L, Zhou Q, Sun Y. Association between Changes in Plasma Metabolism and Clinical Outcomes of Sepsis. Emerg Med Int 2023; 2023:2590115. [PMID: 37346225 PMCID: PMC10281824 DOI: 10.1155/2023/2590115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/23/2023] Open
Abstract
Current prognostic biomarkers for sepsis have limited sensitivity and specificity. This study aimed to investigate dynamic lipid metabolomics and their association with septic immune response and clinical outcomes of sepsis. This prospective cohort study included patients with sepsis who met the Sepsis 3.0 criteria. On hospitalization days 1 (D1) and 7 (D7), plasma samples were collected, and patients underwent liquid chromatography with tandem mass spectrometry. A total of 40 patients were enrolled in the study, 24 (60%) of whom were men. The median age of the enrolled patients was 81 (68-84) years. Thirty-one (77.5%) patients had a primary infection site of the lung. Participants were allocated to the survivor (25 cases) and nonsurvivor (15 cases) groups based on their 28-day survival status. Ultimately, a total of 113 lipids were detected in plasma samples on D 1 and D 7, of which 42 lipids were most abundant in plasma samples. The nonsurvival group had significantly lower lipid expression levels in lysophosphatidylcholine (LysoPC) (16 : 0, 17 : 0,18 : 0) and 18 : 1 SM than those in the survival group (p < 0.05) on D7-D1. The correlation analysis showed that D7-D1 16 : 0 LysoPC (r = 0.367, p = 0.036),17 : 0 LysoPC (r = 0.389, p = 0.025) and 18 : 0 LysoPC(r = 0.472, p = 0.006) levels were positively correlated with the percentage of CD3+ T cell in the D7-D1. Plasma LysoPC and SM changes may serve as prognostic biomarkers for sepsis, and lipid metabolism may play a role in septic immune disturbances.
Collapse
Affiliation(s)
- Xin Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongnan Yin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chenglin Guo
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Lixiang Xue
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Qingtao Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
3
|
Fat digestion and metabolism: effect of different fat sources and fat mobilisers in broilers diet on growth performance and physiological parameters – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Commercial broilers have a short production cycle and a high requirement for energy (3000 kcal/kg in starter phase and 3200 kcal/kg in finisher phase). Therefore, the need to add energy rich lipids to their diet is inevitable. Digestibility of fat depends on its multiple properties: chain length, the composition of fatty acids, ratio of saturated/unsaturated fatty acids and free fatty acids. The high cost of vegetable oils and less availability due to their consumption in human diet are the main reasons for searching cheaper alternative fat sources. Animal oils like poultry and fish oil are the by-product of rendering plants and after refining, they are used in poultry diets as an energy source. Due to presence of impurities and free fatty acids, the digestibility of animal fat is less. There is a limited amount of bile acids and lipase available during early age and when birds are reared on high energy diet (finisher phase). Supplementation of emusifier or lipase in broilers diet increase fat utilisation. Emulsifiers increase fat digestibility by increasing active surface area of lipid droplets. Lysolecithin and Lysophospholipids are produced from hydrolyses of lecithin and phospholipids by phopholipase A2. The bile acids mainly compose of cholic acid, hyodeoxycholic acid and chenodeoxycholic acid and have strong emulsification properties. Triacylglyceryl acylase (lipase) is an enzyme involved in catalysis and the hydrolysis of lipids. It can be concluded that use of emulsifier and lipase in broilers diet improves growth performance, nutrient digestibility and intestinal histology in broilers.
Collapse
|
4
|
Sekar D, Dillmann C, Sirait-Fischer E, Fink AF, Zivkovic A, Baum N, Strack E, Klatt S, Zukunft S, Wallner S, Descot A, Olesch C, da Silva P, von Knethen A, Schmid T, Grösch S, Savai R, Ferreirós N, Fleming I, Ghosh S, Rothlin CV, Stark H, Medyouf H, Brüne B, Weigert A. Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Res 2022; 82:1617-1632. [DOI: 10.1158/0008-5472.can-20-3870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Abstract
An altered lipidome in tumors may affect not only tumor cells themselves but also their microenvironment. In this study, a lipidomics screen reveals increased amounts of phosphatidylserine (PS), particularly ether-PS (ePS), in murine mammary tumors compared with normal tissue. PS was produced by phosphatidylserine synthase 1 (PTDSS1), and depletion of Ptdss1 from tumor cells in mice reduced ePS levels accompanied by stunted tumor growth and decreased tumor-associated macrophage (TAM) abundance. Ptdss1-deficient tumor cells exposed less PS during apoptosis, which was recognized by the PS receptor MERTK. Mammary tumors in macrophage-specific Mertk−/− mice showed similarly suppressed growth and reduced TAM infiltration. Transcriptomic profiles of TAMs from Ptdss1-knockdown tumors and Mertk−/− TAMs revealed that macrophage proliferation was reduced when the Ptdss1/Mertk pathway was targeted. Moreover, PTDSS1 expression correlated positively with TAM abundance but negatively with breast carcinoma patient survival. PTDSS1 thus may be a target to modify tumor-promoting inflammation.
Significance:
This study shows that inhibiting the production of ether-phosphatidylserine by targeting phosphatidylserine synthase PTDSS1 limits tumor-associated macrophage expansion and breast tumor growth.
Collapse
Affiliation(s)
- Divya Sekar
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Christina Dillmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Evelyn Sirait-Fischer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Annika F. Fink
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Stephan Klatt
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
| | - Sven Zukunft
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
| | - Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Arnaud Descot
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ingrid Fleming
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut
| | - Carla V. Rothlin
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cell Dev Biol 2021; 9:630242. [PMID: 33791293 PMCID: PMC8006408 DOI: 10.3389/fcell.2021.630242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.
Collapse
Affiliation(s)
- Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR 8612, Châtenay-Malabry, France
| |
Collapse
|
6
|
Fernández Montoya DJ, Contreras Jordan LA, Moreno-Murillo B, Silva-Gómez E, Mayorga-Wandurraga H. Enantiomeric synthesis of natural alkylglycerols and their antibacterial and antibiofilm activities. Nat Prod Res 2019; 35:2544-2550. [PMID: 31686540 DOI: 10.1080/14786419.2019.1686370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alkylglycerols (AKGs) are bioactive natural compounds that vary by alkyl chain length and degree of unsaturation, and their absolute configuration is 2S. Three AKGs (5l-5n) were synthesised in enantiomerically pure form, and were characterised for the first time together with 12 other known and naturally occurring AKGs (5a-5k, 5o). Their structures were established using 1H and 13C APT NMR with 2D-NMR, ESI-MS or HRESI-MS and optical rotation data, and they were tested for their antibacterial and antibiofilm activities. AKGs 5a-5m and 5o showed activity against five clinical isolates and P. aeruginosa ATCC 15442, with MIC values in the range of 15-125 µg/mL. In addition, at half of the MIC, most of the AKGs reduced S. aureus biofilm formation in the range of 23%-99% and P. aeruginosa ATCC 15442 biofilm formation in the range of 14%-64%. The antibiofilm activity of the AKGs assessed in this work had not previously been studied.
Collapse
Affiliation(s)
- Deicy J Fernández Montoya
- Posgrado Interfacultades de Microbiología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.,Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luis A Contreras Jordan
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Bárbara Moreno-Murillo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Edelberto Silva-Gómez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
7
|
Reduction of Ether-Type Glycerophospholipids, Plasmalogens, by NF-κB Signal Leading to Microglial Activation. J Neurosci 2017; 37:4074-4092. [PMID: 28292831 DOI: 10.1523/jneurosci.3941-15.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation characterized by activation of glial cells is observed in various neurodegenerative diseases including Alzheimer's disease (AD). Although the reduction of ether-type glycerophospholipids, plasmalogens (Pls), in the brain is reported in AD patients, the mechanism of the reduction and its impact on neuroinflammation remained elusive. In the present study, we found for the first time that various inflammatory stimuli reduced Pls levels in murine glial cells via NF-κB activation, which then downregulated a Pls-synthesizing enzyme, glycerone phosphate O-acyltransferase (Gnpat) through increased c-Myc recruitment onto the Gnpat promoter. We also found that systemic injection of lipopolysaccharide, aging, and chronic restraint stress reduced brain Pls contents that were associated with glial NF-κB activation, an increase in c-Myc expression, and downregulation of Gnpat in the mouse cortex and hippocampus. More interestingly, the reduction of Pls contents in the murine cortex itself could increase the activated phenotype of microglial cells and the expression of proinflammatory cytokines, suggesting further acceleration of neuroinflammation by reduction of brain Pls. A similar mechanism of Gnpat reduction was also found in human cell lines, triple-transgenic AD mouse brain, and postmortem human AD brain tissues. These findings suggest a novel mechanism of neuroinflammation that may explain prolonged progression of AD and help us to explore preventive and therapeutic strategies to treat neurodegenerative diseases.SIGNIFICANCE STATEMENT Ether-type glycerophospholipids, plasmalogens (Pls), are reduced in the brain of Alzheimer disease (AD) patients. We found that inflammatory stimuli reduced Pls contents by downregulation of the Pls-synthesizing enzyme glycerone phosphate O-acyltransferase (Gnpat) through NF-κB-mediated recruitment of c-Myc onto the Gnpat promoter in both murine and human cell lines. Murine brains after systemic lipopolysaccharide, chronic stress, and aging, as well as triple-transgenic AD mice and postmortem human AD brain tissues all showed increased c-Myc and reduced Gnpat expression. Interestingly, knockdown of Gnpat itself activated NF-κB in glial cell lines and microglia in mouse cortex. Our findings provide a new insight into the mechanism of neuroinflammation and may help to develop a novel therapeutic approach for neurodegenerative diseases such as AD.
Collapse
|
8
|
Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2016; 38:470-83. [PMID: 27013447 PMCID: PMC6138764 DOI: 10.1016/j.bj.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA.
| |
Collapse
|