1
|
Musiejuk M, Kafarski P. Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals (Basel) 2023; 16:1058. [PMID: 37630973 PMCID: PMC10459688 DOI: 10.3390/ph16081058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lantibiotics are believed to have a conceivable potential to be used as therapeutics, especially against clinically resistant bacterial strains. However, their low solubility and poor stability under physiological conditions limit their availability for clinical studies and further pharmaceutical commercialization. Nisin is a readily available and cheap lanthipeptide and thus serves as a good model in the search for the tools to engineer lantibiotics with improved pharmacological properties. This review aims to address technologies that can be applied to alter and enhance the antimicrobial activity, antibacterial spectrum and physicochemical properties (solubility, solution stability and protease resistance) of nisin. There are basically two general means to obtain nisin analogs-protein engineering and chemical functionalization of this antibiotic. Although bioengineering techniques have been well developed and enable the creation of nisin mutants of variable structures and properties, they are lacking spectacular effects so far. Chemical modifications of nisin based on utilization of the reactivity of its free amino and carboxylic moieties, as well as reactivity of the double bonds of its dehydroamino acids, are in their infancy.
Collapse
Affiliation(s)
| | - Paweł Kafarski
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, pl. Łódzki 4, 10-957 Olsztyn, Poland;
| |
Collapse
|
2
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
3
|
Deng J, Viel JH, Kubyshkin V, Budisa N, Kuipers OP. Conjugation of Synthetic Polyproline Moietes to Lipid II Binding Fragments of Nisin Yields Active and Stable Antimicrobials. Front Microbiol 2020; 11:575334. [PMID: 33329435 PMCID: PMC7715017 DOI: 10.3389/fmicb.2020.575334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Coupling functional moieties to lantibiotics offers exciting opportunities to produce novel derivatives with desirable properties enabling new functions and applications. Here, five different synthetic hydrophobic polyproline peptides were conjugated to either nisin AB (the first two rings of nisin) or nisin ABC (the first three rings of nisin) by using click chemistry. The antimicrobial activity of nisin ABC + O6K3 against Enterococcus faecium decreased 8-fold compared to full-length nisin, but its activity was 16-fold better than nisin ABC, suggesting that modifying nisin ABC is a promising strategy to generate semi-synthetic nisin hybrids. In addition, the resulting nisin hybrids are not prone to degradation at the C-terminus, which has been observed for nisin as it can be degraded by nisinase or other proteolytic enzymes. This methodology allows for getting more insight into the possibility of creating semi-synthetic nisin hybrids that maintain antimicrobial activity, in particular when synthetic and non-proteinaceous moieties are used. The success of this approach in creating viable nisin hybrids encourages further exploring the use of different modules, e.g., glycans, lipids, active peptide moieties, and other antimicrobial moieties.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Jakob H Viel
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany.,Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany.,Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Deng J, Viel JH, Chen J, Kuipers OP. Synthesis and Characterization of Heterodimers and Fluorescent Nisin Species by Incorporation of Methionine Analogues and Subsequent Click Chemistry. ACS Synth Biol 2020; 9:2525-2536. [PMID: 32786360 PMCID: PMC7507115 DOI: 10.1021/acssynbio.0c00308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Noncanonical
amino acids form a highly diverse pool of building
blocks that can render unique physicochemical properties to peptides
and proteins. Here, four methionine analogues with unsaturated and
varying side chain lengths were successfully incorporated at four
different positions in nisin in Lactococcus lactis through force feeding. This approach allows for residue-specific
incorporation of methionine analogues into nisin to expand their structural
diversity and alter their activity profiles. Moreover, the insertion
of methionine analogues with biorthogonal chemical reactivity, e.g.,
azidohomoalanine and homopropargylglycine, provides the opportunity
for chemical coupling to functional moieties and fluorescent probes
as well as for intermolecular coupling of nisin variants. All resulting
nisin conjugates retained antimicrobial activity, which substantiates
the potential of this method as a tool to further study its localization
and mode of action.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jingqi Chen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Mitchell SA, Truscott F, Dickman R, Ward J, Tabor AB. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg Med Chem 2018; 26:5691-5700. [DOI: 10.1016/j.bmc.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
6
|
Bolt HL, Kleijn LHJ, Martin NI, Cobb SL. Synthesis of Antibacterial Nisin⁻Peptoid Hybrids Using Click Methodology. Molecules 2018; 23:E1566. [PMID: 29958423 PMCID: PMC6099617 DOI: 10.3390/molecules23071566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides and structurally related peptoids offer potential for the development of new antibiotics. However, progress has been hindered by challenges presented by poor in vivo stability (peptides) or lack of selectivity (peptoids). Herein, we have developed a process to prepare novel hybrid antibacterial agents that combine both linear peptoids (increased in vivo stability compared to peptides) and a nisin fragment (lipid II targeting domain). The hybrid nisin⁻peptoids prepared were shown to have low micromolar activity (comparable to natural nisin) against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Hannah L Bolt
- Center for Global Infectious Diseases, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Laurens H J Kleijn
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Nathaniel I Martin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Steven L Cobb
- Center for Global Infectious Diseases, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
7
|
|
8
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Koopmans T, Wood TM, 't Hart P, Kleijn LHJ, Hendrickx APA, Willems RJL, Breukink E, Martin NI. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. J Am Chem Soc 2015; 137:9382-9. [PMID: 26122963 DOI: 10.1021/jacs.5b04501] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic constructs that display potent inhibition of bacterial growth, with activities approaching that of nisin itself. Most notable was the activity observed against clinically relevant bacterial strains including MRSA and VRE. Experiments with membrane models indicate that these constructs operate via a lipid II-mediated mode of action without causing pore formation. A lipid II-dependent mechanism of action is further supported by antagonization assays wherein the addition of lipid II was found to effectively block the antibacterial activity of the nisin-derived lipopeptides.
Collapse
Affiliation(s)
| | | | | | | | - Antoni P A Hendrickx
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Eefjan Breukink
- §Membrane Biochemistry and Biophysics Group, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Escano J, Smith L. Multipronged approach for engineering novel peptide analogues of existing lantibiotics. Expert Opin Drug Discov 2015; 10:857-70. [PMID: 26004576 DOI: 10.1517/17460441.2015.1049527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are a class of ribosomally and post-translationally modified peptide antibiotics that are active against a broad spectrum of Gram-positive bacteria. Great efforts have been made to promote the production of these antibiotics, so that they can one day be used in our antimicrobial arsenal to combat multidrug-resistant bacterial infections. AREAS COVERED This review provides a synopsis of lantibiotic research aimed at furthering our understanding of the structural limitation of lantibiotics as well as identifying structural regions that can be modified to improve the bioactivity. In vivo, in vitro and chemical synthesis of lantibiotics has been useful for engineering novel variants with enhanced activities. These approaches have provided novel ways to further our understanding of lantibiotic function and have advanced the objective to develop lantibiotics for the treatment of infectious diseases. EXPERT OPINION Synthesis of lantibiotics with enhanced activities will lead to the discovery of new promising drug candidates that will have a long lasting impact on the treatment of Gram-positive infections. The current body of literature for producing structural variants of lantibiotics has been more of a 'proof-of-principle' approach and the application of these methods has not yet been fully utilized.
Collapse
Affiliation(s)
- Jerome Escano
- Texas A&M University, Department of Biological Sciences, College Station , TX 77843 , USA
| | | |
Collapse
|