1
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Li M, Zhang L, Yu J, Wang X, Cheng L, Ma Z, Chen X, Wang L, Goh BC. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies. Front Pharmacol 2024; 15:1378292. [PMID: 38523637 PMCID: PMC10957692 DOI: 10.3389/fphar.2024.1378292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17β-estradiol (a potent estrogen), and 11β-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.
Collapse
Affiliation(s)
- Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
- The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Maddeboina K, Jonnalagadda SK, Morsy A, Duan L, Chhonker YS, Murry DJ, Penning TM, Trippier PC. Aldo-Keto Reductase 1C3 Inhibitor Prodrug Improves Pharmacokinetic Profile and Demonstrates In Vivo Efficacy in a Prostate Cancer Xenograft Model. J Med Chem 2023; 66:9894-9915. [PMID: 37428858 PMCID: PMC11963376 DOI: 10.1021/acs.jmedchem.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of 5r, a potent AKR1C3 inhibitor (IC50 = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms. Due to the cognizance of the poor pharmacokinetics associated with free carboxylic acids, a methyl ester prodrug strategy was pursued. The prodrug 4r was converted to free acid 5r in vitro in mouse plasma and in vivo. The in vivo pharmacokinetic evaluation revealed an increase in systemic exposure and increased the maximum 5r concentration compared to direct administration of the free acid. The prodrug 4r demonstrated a dose-dependent effect to reduce the tumor volume of 22Rv1 prostate cancer xenografts without observed toxicity.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
4
|
Matsunaga T, Horinouchi M, Saito H, Hisamatsu A, Iguchi K, Yoshino Y, Endo S, Ikari A. Availability of aldo-keto reductase 1C3 and ATP-binding cassette B1 as therapeutic targets for alleviating paclitaxel resistance in breast cancer MCF7 cells. J Biochem 2023; 173:167-175. [PMID: 36413758 DOI: 10.1093/jb/mvac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel (PTX) is frequently utilized for the chemotherapy of breast cancer, but its continuous treatment provokes hyposensitivity. Here, we established a PTX-resistant variant of human breast cancer MCF7 cells and found that acquiring the chemoresistance elicits a remarkable up-regulation of aldo-keto reductase (AKR) 1C3. MCF7 cell sensitivity to PTX toxicity was increased by pretreatment with AKR1C3 inhibitor and knockdown of this enzyme, and decreased by its overexpression, inferring a crucial role of AKR1C3 in the development of PTX resistance. The PTX-resistant cells were much less sensitive to 4-hydroxy-2-nonenal and acrolein, cytotoxic reactive aldehydes derived from ROS-mediated lipid peroxidation, compared with the parental cells. Additionally, the resistant cells lowered levels of 4-hydroxy-2-nonenal formed during PTX treatment, which was mitigated by pretreating with AKR1C3 inhibitor, suggesting that AKR1C3 procures the chemoresistance through facilitating the metabolism of the cytotoxic aldehyde. The gain of PTX resistance additively promoted the aberrant expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with AKR1C3 and ABCB1 inhibitors overcame the PTX resistance and cross-resistance to another taxane-based drug docetaxel. Collectively, combined treatment with AKR1C3 and ABCB1 inhibitors may exert an overcoming effect of PTX resistance in breast cancer.
Collapse
Key Words
- ATP-binding cassette B1
- Aldo-keto reductase 1C3
Abbreviations: AKR, aldo-keto reductase; BPS, 3-bromo-5-phenylsalicylic acid; BSO, buthionine sulfoximine; CDDP, cis-diamminedichloroplatinum; CDDP-R, CDDP-resistant MCF7; DPBS, Dulbecco’s phosphate-buffered saline; DTNB, 5,5′-dithiobis(2-nitrobenzoic acid); DTX, docetaxel; GCL, glutamate-cysteine ligase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; GSHEE, glutathione ethyl ester;
GST, glutathione S-transferase; HNE, 4-hydroxy-2-nonenal; Keap1, Kelch-like ECH associated protein 1; MCA, 4-methylcoumaryl-7-amide; MG132, Z-Leu-Leu-Leu-al; Nrf2, nuclear factor erythroid 2-related factor 2; PCR, polymerase-chain reaction; PG, prostaglandin; ROS, reactive oxygen species; SFN, sulforaphane; siRNA, small-interfering RNA; TOL, tolfenamic acid; UDCA, ursodeoxycholic acid
- breast cancer
- chemoresistance
- docetaxel
- paclitaxel
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan.,Education Center of Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Misato Horinouchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Haruhi Saito
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Aki Hisamatsu
- Education Center of Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
5
|
Kudo Y, Endo S, Tanio M, Saka T, Himura R, Abe N, Takeda M, Yamaguchi E, Yoshino Y, Arai Y, Kashiwagi H, Oyama M, Itoh A, Shiota M, Fujimoto N, Ikari A. Antiandrogenic Effects of a Polyphenol in Carex kobomugi through Inhibition of Androgen Synthetic Pathway and Downregulation of Androgen Receptor in Prostate Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms232214356. [PMID: 36430833 PMCID: PMC9696374 DOI: 10.3390/ijms232214356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC involves ectopic androgen production in the adrenal glands and abnormal activation of androgen signaling due to mutations and/or amplification of the androgen receptor (AR) as well as activation of androgen-independent proliferative pathways. Recent studies have shown that adrenal-derived 11-oxygenated androgens (11-ketotestosterone and 11-ketodihydrotestosterone) with potencies equivalent to those of traditional androgens (testosterone and dihydrotestosterone) are biomarkers of CRPC. Additionally, dehydrogenase/reductase SDR family member 11 (DHRS11) has been reported to be a 17β-hydroxysteroid dehydrogenase that catalyzes the production of the 11-oxygenated and traditional androgens. This study was conducted to evaluate the pathophysiological roles of DHRS11 in PC using three LNCaP, C4-2 and 22Rv1 cell lines. DHRS11 silencing and inhibition resulted in suppression of the androgen-induced expression of AR downstream genes and decreases in the expression of nuclear AR and the proliferation marker Ki67, suggesting that DHRS11 is involved in androgen-dependent PC cell proliferation. We found that 5,7-dihydroxy-8-methyl-2-[2-(4-hydroxyphenyl)ethenyl]-4H-1-benzopyran-4-one (Kobochromone A, KC-A), an ingredient in the flowers of Carex kobomugi, is a novel potent DHRS11 inhibitor (IC50 = 0.35 μM). Additionally, KC-A itself decreased the AR expression in PC cells. Therefore, KC-A suppresses the androgen signaling in PC cells through both DHRS11 inhibition and AR downregulation. Furthermore, KC-A enhanced the anticancer activity of abiraterone, a CRPC drug, suggesting that it may be a potential candidate for the development of drugs for the prevention and treatment of CRPC.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel.: +81-58-230-8100; Fax: +81-58-230-8105
| | - Masatoshi Tanio
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tomofumi Saka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Rin Himura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mitsumi Takeda
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuki Arai
- Universal Corporation Co., Ltd., Gifu 502-0931, Japan
| | - Hirohito Kashiwagi
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Universal Corporation Co., Ltd., Gifu 502-0931, Japan
| | - Masayoshi Oyama
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Rodrigues DM, Portapilla GB, Silva GM, Duarte A, Rotta CG, da Silva CHTDP, de Albuquerque S, Bastos JK, Campo VL. Synthesis, antitumor activity and in silico analyses of amino acid derivatives of artepillin C, drupanin and baccharin from green propolis. Bioorg Med Chem 2021; 47:116372. [PMID: 34454129 DOI: 10.1016/j.bmc.2021.116372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids. All obtained derivatives were submitted to antiproliferative assays against four cancer cells (MCF-7, MDA MB-231, PC-3, and DU145) and two normal cell lines (MCF-10A and PNT-2) to evaluate their cytotoxicity. In general, the best activity was observed for compound6e, derived from drupanin, which exhibited half-maximal inhibitory concentration (IC50) of 9.6 ± 3 μM and selectivity index (SI) of 5.5 against MCF-7 cells.In silicostudies demonstrated that these derivatives present coherent docking interactions and binding modes against AKR1C3, which might represent a possible mechanism of inhibition in MCF-7 cells.
Collapse
Affiliation(s)
- Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil
| | - Gisele Bulhões Portapilla
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil
| | - Guilherme Martins Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-901 Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- Department of Pathology and Forensic Medicine - University of São Paulo, Av. do Café S/N, 14049-900 Ribeirão Preto Medical School, SP, Brazil
| | - Cristiana Gonçalez Rotta
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-901 Ribeirão Preto, SP, Brazil
| | - Sérgio de Albuquerque
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil
| | - Vanessa Leiria Campo
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café S/N, 14040-930 Ribeirão Preto, SP, Brazil; Barão de Mauá University Center, St. Ramos de Azevedo 423, 14090-180 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Moise AR, Bobiş O. Baccharis dracunculifolia and Dalbergia ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Propolis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1619. [PMID: 33233429 PMCID: PMC7700410 DOI: 10.3390/plants9111619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, propolis is used as a highly valuable product in alternative medicine for improving health or treating a large spectrum of pathologies, an ingredient in pharmaceutical products, and also as a food additive. Different vegetal materials are collected by honeybees and mixed with wax and other own substances in order to obtain the final product, called propolis. It is known as the bee product with the widest chemical composition due to the raw material collected by the bees. Different types are known worldwide: green Brazilian propolis (having Baccharis dracunculifolia as the major plant source), red Brazilian propolis (from Dalbergia ecastophyllum), European propolis (Populus nigra L.), Russian propolis (Betula verrucosa Ehrh), Cuban and Venezuelan red propolis (Clusia spp.), etc. An impressive number of scientific papers already demonstrate the pharmacological potential of different types of propolis, the most important activities being the antimicrobial, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. However, the bioactive compounds responsible for each activity have not been fully elucidated. This review aims to collect important data about the chemical composition and bioactive properties of the vegetal sources and to compare with the chemical composition of respective propolis types, in order to determine the connection between the floral source and the propolis properties.
Collapse
Affiliation(s)
- Adela Ramona Moise
- Department of Apiculture and Sericulture, Faculty of Animal Breeding and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Otilia Bobiş
- Life Science Institute “King Michael I of Romania”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Endo S, Oguri H, Segawa J, Kawai M, Hu D, Xia S, Okada T, Irie K, Fujii S, Gouda H, Iguchi K, Matsukawa T, Fujimoto N, Nakayama T, Toyooka N, Matsunaga T, Ikari A. Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. J Med Chem 2020; 63:10396-10411. [PMID: 32847363 DOI: 10.1021/acs.jmedchem.0c00939] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aldo-keto reductase (AKR) 1C3 catalyzes the synthesis of active androgens that promote the progression of prostate cancer. AKR1C3 also contributes to androgen-independent cell proliferation and survival through the metabolism of prostaglandins and reactive aldehydes. Because of its elevation in castration-resistant prostate cancer (CRPC) tissues, AKR1C3 is a promising therapeutic target for CRPC. In this study, we found a novel potent AKR1C3 inhibitor, N-(4-fluorophenyl)-8-hydroxy-2-imino-2H-chromene-3-carboxamide (2d), and synthesized its derivatives with IC50 values of 25-56 nM and >220-fold selectivity over other AKRs (1C1, 1C2, and 1C4). The structural factors for the inhibitory potency were elucidated by crystallographic study of AKR1C3 complexes with 2j and 2l. The inhibitors suppressed proliferation of prostate cancer 22Rv1 and PC3 cells through both androgen-dependent and androgen-independent mechanisms. Additionally, 2j and 2l prevented prostate tumor growth in a xenograft mouse model. Furthermore, the inhibitors significantly augmented apoptotic cell death induced by anti-CRPC drugs (abiraterone or enzalutamide).
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Department of Pharmacy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takuo Matsukawa
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
9
|
Liu Y, He S, Chen Y, Liu Y, Feng F, Liu W, Guo Q, Zhao L, Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J Med Chem 2020; 63:11305-11329. [PMID: 32463235 DOI: 10.1021/acs.jmedchem.9b02138] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human aldo-keto reductase family 1 member C3 (AKR1C3) is known as a hormone activity regulator and prostaglandin F (PGF) synthase that regulates the occupancy of hormone receptors and cell proliferation. Because of the overexpression in metabolic diseases and various hormone-dependent and -independent carcinomas, as well as the emergence of clinical drug resistance, an increasing number of studies have investigated AKR1C3 inhibitors. Here, we briefly review the physiological and pathological function of AKR1C3 and then summarize the recent development of selective AKR1C3 inhibitors. We propose our viewpoints on the current problems associated with AKR1C3 inhibitors with the aim of providing a reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective AKR1C3 inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Siyu He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
10
|
The Role of Baccharis dracunculifolia and its Chemical Profile on Green Propolis Production by Apis mellifera. J Chem Ecol 2019; 46:150-162. [DOI: 10.1007/s10886-019-01141-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 01/22/2023]
|
11
|
Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg Chem 2019; 93:103327. [DOI: 10.1016/j.bioorg.2019.103327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/14/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
|
12
|
Matsunaga T, Kawabata S, Yanagihara Y, Kezuka C, Kato M, Morikawa Y, Endo S, Chen H, Iguchi K, Ikari A. Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chem Biol Interact 2019; 314:108839. [PMID: 31563593 DOI: 10.1016/j.cbi.2019.108839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Here, we show that incubation of three human gastrointestinal cancer cell lines (HCT15, LoVo and MKN45) with doxorubicin (DOX) provokes autophagy through facilitating production of reactive oxygen species (ROS). HCT15 cell treatment with DOX resulted in up-regulation of Beclin1, down-regulation of Bcl2, activation of AMPK and JNK, and Akt inactivation, all of which were restored by pretreating with an antioxidant N-acetyl-l-cysteine. These data suggest that all the autophagy-related alterations evoked by DOX result from the ROS production. In the DOX-resistant cancer cells, degree of autophagy elicited by DOX was milder than the parental cells, and DOX treatment hardly activated the ROS-dependent apoptotic signals [formation of 4-hydroxy-2-nonenal (HNE), cytochrome-c release into cytosol, and activation of JNK and caspase-3], inferring an inverse correlation between cellular antioxidant capacity and autophagy induction by DOX. Monitoring of expression levels of aldo-keto reductases (AKRs) in the parental and DOX-resistant cells revealed an up-regulation of AKR1B10 and/or AKR1C3 with acquiring the DOX resistance. Knockdown and inhibition of AKR1B10 or AKR1C3 in these cells enhanced DOX-elicited autophagy. Measurement of DOX-reductase activity and HNE-sensitivity assay also suggested that both AKR1B10 (via high HNE-reductase activity) and AKR1C3 (via low HNE-reductase and DOX-reductase activities) are involved in the development of DOX resistance. Combination of inhibitors of autophagy and the two AKRs overcame DOX resistance and cross-resistance of gastrointestinal cancer cells with resistance development to DOX or cis-diamminedichloroplatinum. Therefore, concomitant treatment with the inhibitors may be effective as an adjuvant therapy for elevating DOX sensitivity of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| | - Saori Kawabata
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuji Yanagihara
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misaki Kato
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Huayue Chen
- Department of Anatomy School of Medicine, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
13
|
Verma K, Zang T, Penning TM, Trippier PC. Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2019; 62:3590-3616. [PMID: 30836001 DOI: 10.1021/acs.jmedchem.9b00090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) catalyzes the synthesis of 9α,11β-prostaglandin (PG) F2α and PGF2α prostanoids that sustain the growth of myeloid precursors in the bone marrow. The enzyme is overexpressed in acute myeloid leukemia (AML) and T-cell acute lymphoblastic leukemia (T-ALL). Moreover, AKR1C3 confers chemotherapeutic resistance to the anthracyclines: first-line agents for the treatment of leukemias. The highly homologous isoforms AKR1C1 and AKR1C2 inactivate 5α-dihydrotestosterone, and their inhibition would be undesirable. We report herein the identification of AKR1C3 inhibitors that demonstrate exquisite isoform selectivity for AKR1C3 over the other closely related isoforms to the order of >2800-fold. Biological evaluation of our isoform-selective inhibitors revealed a high degree of synergistic drug action in combination with the clinical leukemia therapeutics daunorubicin and cytarabine in in vitro cellular models of AML and primary patient-derived T-ALL cells. Our developed compounds exhibited >100-fold dose reduction index that results in complete resensitization of a daunorubicin-resistant AML cell line to the chemotherapeutic and >100-fold dose reduction of cytarabine in both AML cell lines and primary T-ALL cells.
Collapse
Affiliation(s)
- Kshitij Verma
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
14
|
Pingaew R, Prachayasittikul V, Anuwongcharoen N, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorg Chem 2018; 79:171-178. [DOI: 10.1016/j.bioorg.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
|
15
|
AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood 2015; 126:1193-202. [PMID: 26116659 DOI: 10.1182/blood-2014-12-618900] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
PR-104, a phosphate ester of the nitrogen mustard prodrug PR-104A, has shown evidence of efficacy in adult leukemia clinical trials. Originally designed to target hypoxic cells, PR-104A is independently activated by aldo-keto-reductase 1C3 (AKR1C3). The aim of this study was to test whether AKR1C3 is a predictive biomarker of in vivo PR-104 sensitivity. In a panel of 7 patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts, PR-104 showed significantly greater efficacy against T-lineage ALL (T-ALL) than B-cell-precursor ALL (BCP-ALL) xenografts. Single-agent PR-104 was more efficacious against T-ALL xenografts compared with a combination regimen of vincristine, dexamethasone, and l-asparaginase. Expression of AKR1C3 was significantly higher in T-ALL xenografts compared with BCP-ALL, and correlated with PR-104/PR-104A sensitivity in vivo and in vitro. Overexpression of AKR1C3 in a resistant BCP-ALL xenograft resulted in dramatic sensitization to PR-104 in vivo. Testing leukemic blasts from 11 patients confirmed that T-ALL cells were more sensitive than BCP-ALL to PR-104A in vitro, and that sensitivity correlated with AKR1C3 expression. Collectively, these results indicate that PR-104 shows promise as a novel therapy for relapsed/refractory T-ALL, and that AKR1C3 expression could be used as a biomarker to select patients most likely to benefit from such treatment in prospective clinical trials.
Collapse
|
16
|
Morikawa Y, Kezuka C, Endo S, Ikari A, Soda M, Yamamura K, Toyooka N, El-Kabbani O, Hara A, Matsunaga T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10. Chem Biol Interact 2015; 230:30-9. [PMID: 25686905 DOI: 10.1016/j.cbi.2015.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Continuous exposure to doxorubicin (DOX) accelerates hyposensitivity to the drug-elicited lethality of gastric cells, with increased risks of the recurrence and serious cardiovascular side effects. However, the detailed mechanisms underlying the reduction of DOX sensitivity remain unclear. In this study, we generated a DOX-resistant variant upon continuously treating human gastric cancer MKN45 cells with incremental concentrations of the drug, and investigated whether the gain of DOX resistance influences gene expression of four aldo-keto reductases (AKRs: 1B10, 1C1, 1C2 and 1C3). RT-PCR analysis revealed that among the enzymes AKR1B10 is most highly up-regulated during the chemoresistance induction. The up-regulation of AKR1B10 was confirmed by analyses of Western blotting and enzyme activity. The DOX sensitivity of MKN45 cells was reduced and elevated by overexpression and inhibition of AKR1B10, respectively. Compared to the parental MKN45 cells, the DOX-resistant cells had higher migrating and invasive abilities, which were significantly suppressed by addition of AKR1B10 inhibitors. Zymographic and real-time PCR analyses also revealed significant increases in secretion and expression of matrix metalloproteinase (MMP) 2 associated with DOX resistance. Moreover, the overexpression of AKR1B10 in the parental cells remarkably facilitated malignant progression (elevation of migrating and invasive potentials) and MMP2 secretion, which were lowered by the AKR1B10 inhibitors. These results suggest that AKR1B10 is a DOX-resistance gene in the gastric cancer cells, and is responsible for elevating the migrating and invasive potentials of the cells through induction of MMP2.
Collapse
Affiliation(s)
- Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naoki Toyooka
- Graduate School of Science and Technology for Research, University of Toyama, Toyama 930-8555, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
17
|
Nikolić AR, Petri ET, Klisurić OR, Ćelić AS, Jakimov DS, Djurendić EA, Penov Gaši KM, Sakač MN. Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: Identification of a selective inhibitor of hormone-independent breast cancer cells. Bioorg Med Chem 2015; 23:703-11. [DOI: 10.1016/j.bmc.2014.12.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 01/25/2023]
|
18
|
Zang T, Verma K, Chen M, Jin Y, Trippier PC, Penning TM. Screening baccharin analogs as selective inhibitors against type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Chem Biol Interact 2014; 234:339-48. [PMID: 25555457 DOI: 10.1016/j.cbi.2014.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase, is a downstream steroidogenic enzyme and converts androgen precursors to the potent androgen receptor ligands: testosterone and 5α-dihydrotestosterone. Studies have shown that AKR1C3 is involved in the development of castration resistant prostate cancer (CRPC) and that it is a rational drug target for the treatment of CRPC. Baccharin, a component of Brazilian propolis, has been observed to exhibit a high inhibitory potency and selectivity for AKR1C3 over other AKR1C isoforms and is a promising lead compound for developing more potent and selective inhibitors. Here, we report the screening of fifteen baccharin analogs as selective inhibitors against AKR1C3 versus AKR1C2 (type 3 3α-hydroxysteroid dehydrogenase). Among these analogs, the inhibitory activity and selectivity of thirteen compounds were evaluated for the first time. The substitution of the 4-dihydrocinnamoyloxy group of baccharin by an acetate group displayed nanomolar inhibitory potency (IC50: 440 nM) and a 102-fold selectivity over AKR1C2. By contrast, when the cinnamic acid group of baccharin was esterified, there was a dramatic decrease in potency and selectivity for AKR1C3 in comparison to baccharin. Low or sub-micromolar inhibition was observed when the 3-prenyl group of baccharin was removed, and the selectivity over AKR1C2 was low. Although unsubstituted baccharin was still the most potent (IC50: 100 nM) and selective inhibitor for AKR1C3, these data provide structure-activity relationships required for the optimization of new baccharin analogs. They suggest that the carboxylate group on cinnamic acid, the prenyl group, and either retention of 4-dihydrocinnamoyloxy group or acetate substituent on cinnamic acid are important to maintain the high potency and selectivity for AKR1C3.
Collapse
Affiliation(s)
- Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, United States
| | - Kshitij Verma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Mo Chen
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, United States
| | - Yi Jin
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States; Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, United States.
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, United States.
| |
Collapse
|