1
|
Erdei AI, Borbély A, Magyar A, Taricska N, Perczel A, Zsíros O, Garab G, Szűcs E, Ötvös F, Zádor F, Balogh M, Al-Khrasani M, Benyhe S. Biochemical and pharmacological characterization of three opioid-nociceptin hybrid peptide ligands reveals substantially differing modes of their actions. Peptides 2018; 99:205-216. [PMID: 29038035 DOI: 10.1016/j.peptides.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
In an attempt to design opioid-nociceptin hybrid peptides, three novel bivalent ligands, H-YGGFGGGRYYRIK-NH2, H-YGGFRYYRIK-NH2 and Ac-RYYRIKGGGYGGFL-OH were synthesized and studied by biochemical, pharmacological, biophysical and molecular modelling tools. These chimeric molecules consist of YGGF sequence, a crucial motif in the N-terminus of natural opioid peptides, and Ac-RYYRIK-NH2, which was isolated from a combinatorial peptide library as an antagonist or partial agonist that inhibits the biological activity of the endogenously occurring heptadecapeptide nociceptin. Solution structures for the peptides were studied by analysing their circular dichroism spectra. Receptor binding affinities were measured by equilibrium competition experiments using four highly selective radioligands. G-protein activating properties of the multitarget peptides were estimated in [35S]GTPγS binding tests. The three compounds were also measured in electrically stimulated mouse vas deferens (MVD) bioassay. H-YGGFGGGRYYRIK-NH2 (BA55), carrying N-terminal opioid and C-terminal nociceptin-like sequences interconnected with GGG tripeptide spacer displayed a tendency of having either unordered or β-sheet structures, was moderately potent in MVD and possessed a NOP/KOP receptor preference. A similar peptide without spacer H-YGGFRYYRIK-NH2 (BA62) exhibited the weakest effect in MVD, more α-helical periodicity was present in its structure and it exhibited the most efficacious agonist actions in the G-protein stimulation assays. The third hybrid peptide Ac-RYYRIKGGGYGGFL-OH (BA61) unexpectedly displayed opioid receptor affinities, because the opioid message motif is hidden within the C-terminus. The designed chimeric peptide ligands presented in this study accommodate well into a group of multitarget opioid compounds that include opioid-non-opioid peptide dimer analogues, dual non-peptide dimers and mixed peptide- non-peptide bifunctional ligands.
Collapse
Affiliation(s)
- Anna I Erdei
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary; MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Ottó Zsíros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|
2
|
Matsushima A, Nishimura H, Matsuyama Y, Liu X, Costa T, Shimohigashi Y. Specific affinity-labeling of the nociceptin ORL1 receptor using a thiol-activated Cys(Npys)-containing peptide ligand. Biopolymers 2016; 106:460-9. [DOI: 10.1002/bip.22792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Ayami Matsushima
- Department of Chemistry, Laboratory of Structure-Function Biochemistry, Faculty and Graduate School of Science; Kyushu University; Fukuoka 819-0395 Japan
| | - Hirokazu Nishimura
- Department of Chemistry, Laboratory of Structure-Function Biochemistry, Faculty and Graduate School of Science; Kyushu University; Fukuoka 819-0395 Japan
| | - Yutaka Matsuyama
- Department of Chemistry, Laboratory of Structure-Function Biochemistry, Faculty and Graduate School of Science; Kyushu University; Fukuoka 819-0395 Japan
| | - Xiaohui Liu
- Department of Chemistry, Laboratory of Structure-Function Biochemistry, Faculty and Graduate School of Science; Kyushu University; Fukuoka 819-0395 Japan
| | - Tommaso Costa
- Istituto Superiore Di Sanità; Laboratorio Di Farmacologia; Viale Regina Elena 299 Roma Italy
| | - Yasuyuki Shimohigashi
- Department of Chemistry, Laboratory of Structure-Function Biochemistry, Faculty and Graduate School of Science; Kyushu University; Fukuoka 819-0395 Japan
| |
Collapse
|
3
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|