1
|
Kamal M, Jawaid T, Dar UA, Shah SA. Amide as a Potential Pharmacophore for Drug Designing of Novel Anticonvulsant Compounds. CHEMISTRY OF BIOLOGICALLY POTENT NATURAL PRODUCTS AND SYNTHETIC COMPOUNDS 2021:319-342. [DOI: 10.1002/9781119640929.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
An overview of structurally diversified anticonvulsant agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:321-344. [PMID: 31259739 DOI: 10.2478/acph-2019-0023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2018] [Indexed: 01/19/2023]
Abstract
There are several limited approaches to treat epilepsy in hospitals, for example, using medicines, surgery, electrical stimulation and dietary interventions. Despite the availability of all these new and old approaches, seizure is particularly difficult to manage. The quest for new antiepileptic molecules with more specificity and less CNS toxicity continues for medicinal chemists until a new and ideal drug arrives. This review covers new antiseizure molecules of different chemical classes, the exact mode of action of which is still unidentified. Newer agents include sulfonamides, thiadiazoles, semi- and thiosemicarbazones, pyrrolidine-2,5-diones, imidazoles, benzothiazoles and amino acid deriva tives. These new chemical entities can be useful for the design and development of forthcoming antiseizure agents.
Collapse
|
3
|
Cai S, Bellampalli SS, Yu J, Li W, Ji Y, Wijeratne EMK, Dorame A, Luo S, Shan Z, Khanna M, Moutal A, Streicher JM, Gunatilaka AAL, Khanna R. (-)-Hardwickiic Acid and Hautriwaic Acid Induce Antinociception via Blockade of Tetrodotoxin-Sensitive Voltage-Dependent Sodium Channels. ACS Chem Neurosci 2019; 10:1716-1728. [PMID: 30525440 DOI: 10.1021/acschemneuro.8b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.
Collapse
Affiliation(s)
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | | | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | - May Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | | | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
4
|
Pańczyk K, Żelaszczyk D, Koczurkiewicz P, Słoczyńska K, Pękala E, Żesławska E, Nitek W, Żmudzki P, Marona H, Waszkielewicz A. Synthesis and anticonvulsant activity of phenoxyacetyl derivatives of amines, including aminoalkanols and amino acids. MEDCHEMCOMM 2018; 9:1933-1948. [PMID: 30568761 DOI: 10.1039/c8md00430g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023]
Abstract
A series of 17 new phenoxyacetamides has been prepared via multistep chemical synthesis as a continuation of the research carried out by our group on di- and tri-substituted phenoxyalkyl and phenoxyacetyl derivatives of amines. The obtained compounds vary in an amide component, for example aminoalkanol or (un)modified amino acid moieties were introduced. The structures of selected products were confirmed by means of crystallographic methods. All 17 compounds were the subject of preliminary screening for potential anticonvulsant activity (MES, 6 Hz and/or scMET tests) and neurotoxicity (rotarod) in mice after intraperitoneal administration, while several active compounds were subsequently examined in additional models (e.g. MES and rotarod - rats, p.o. or i.p., hippocampal kindling - rats, i.p.). Finally, safety studies (cytotoxicity and cell proliferation assays on astrocytes, metabolic stability assessment, mutagenicity evaluation) were performed for several active compounds, including the most promising one (R-(-)-2-(2,6-dimethylphenoxy)-N-(1-hydroxypropan-2-yl)acetamide, MES ED50 = 12.00 mg per kg b.w., rats, p.o.).
Collapse
Affiliation(s)
- Katarzyna Pańczyk
- Department of Bioorganic Chemistry , Chair of Organic Chemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland .
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry , Chair of Organic Chemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland .
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland
| | - Ewa Żesławska
- Department of Chemistry , Institute of Biology , Pedagogical University , Podchorążych 2 , 30-084 Cracow , Poland
| | - Wojciech Nitek
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Cracow , Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry , Chair of Organic Chemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland .
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry , Chair of Organic Chemistry , Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland .
| |
Collapse
|
5
|
Behalo MS. Facile Synthesis of Novel Amino Acids Derivatives as Potential Antibacterial Agents using Sustainable Materials. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohamed S. Behalo
- Chemistry Department, Faculty of Science; Benha University; Benha P. O. Box 13518 Egypt
| |
Collapse
|
6
|
Sadek B, Oz M, Nurulain SM, Jayaprakash P, Latacz G, Kieć-Kononowicz K, Szymańska E. Phenylalanine derivatives with modulating effects on human α1-glycine receptors and anticonvulsant activity in strychnine-induced seizure model in male adult rats. Epilepsy Res 2017; 138:124-131. [PMID: 28554717 DOI: 10.1016/j.eplepsyres.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/01/2017] [Accepted: 05/19/2017] [Indexed: 01/27/2023]
Abstract
The critical role of α1-glycine receptor (α1-GLYRs) in pathological conditions such as epilepsy is well known. In the present study, structure-activity relations for a series of phenylalanine derivatives carrying selected hydrogen bond acceptors were investigated on the functional properties of human α1-GLYR expressed in Xenopus oocytes. The results indicate that one particular substitution position appeared to be of special importance for control of ligand activity. Among tested ligands (1-8), the biphenyl derivative (2) provided the most promising antagonistic effect on α1-GLYRs, while its phenylbenzyl analogue (5) exhibited the highest potentiation effect. Moreover, ligand 5 with most promising potentiating effect showed in-vivo moderate protection when tested in strychnine (STR)-induced seizure model in male adult rats, whereas ligand 2 with highest antagonistic effect failed to provide appreciable anti(pro)convulsant effect. Furthermore, ligands 2 and 5 with the most promising effects on human α1-GLYRs were examined for their toxicity and potential neuroprotective effect against neurotoxin 6-hydroxydopamine (6-OHDA). The results show that ligands 2 and 5 possessed neither significant antiproliferative effects, nor necrotic and mitochondrial toxicity (up to concentration of 50μM). Moreover, ligand 2 showed weak neuroprotective effect at the 50μM against 100μM toxic dose of 6-OHDA. Our results indicate that modulatory effects of ligands 2 and 5 on human α1-GLYRs as well as on STR-induced convulsion can provide further insights for the design of therapeutic agents in treatment of epilepsy and other pathological conditions requiring enhanced activity of inhibitory glycine receptors.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - Syed M Nurulain
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates; Department of Bioscience, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Petrilla Jayaprakash
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box 17666, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
7
|
Behalo MS. A convenient synthesis of novel amino acid derivatives with potential antibacterial activity using sustainable materials. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14925986241061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following the principles of green chemistry, cardanol derivatives have been used as renewable, low-cost and easily available natural starting materials to construct a variety of protected and unprotected amino acid derivatives. The reaction of cardanol derivatives with different phthalylamino acids including glycine, alanine, phenylalanine and valine in the presence of N,N′-dicyclohexylcarbodiimide (DCC) as coupling reagent yielded the target compounds in high yields. Deprotection of phthalylamino acid derivatives was achieved by heating with hydrazine hydrate. The chemical structures of all products were confirmed by spectral (FTIR, MS, 1H NMR, 13C NMR) and elemental analyses. The synthesised products were evaluated for their antibacterial activity, and the compounds exhibited potent to weak activity in comparison with a standard drug.
Collapse
Affiliation(s)
- Mohamed S. Behalo
- Chemistry Department, Faculty of Science, Benha University, Benha, PO Box 13518, Egypt
| |
Collapse
|