1
|
Anand P, Chhimwal J, Dhiman S, Yamini, Patial V, Das P, Ahmed Z, Nandi U, Tavassoli M, Padwad Y. Evaluation of Pyrrolone-Fused Benzosuberene MK2 Inhibitors as Promising Therapeutic Agents for HNSCC: In Vitro Efficacy, In-Vivo Safety, and Pharmacokinetic Profiling. Drug Dev Res 2025; 86:e70062. [PMID: 40009048 DOI: 10.1002/ddr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
MAPKAPK2/MK2 is well implicated in the progression of Head and Neck Squamous Cell Carcinoma (HNSCC), and potent MK2-inhibitors are required to suppress its activity. Several MK2-inhibitors have been developed in recent years to combat its effects on cancer. However, inadequate solubility, insufficient cellular permeability, systemic toxicity-mediated side effects, and low bioavailability have severely impeded the advancement of MK2-inhibitors to clinical trials. This void necessitates research to develop less toxic and more bioavailable potent MK2-inhibitors in HNSCC. In the present article, we have evaluated the in-vitro efficacy, in-vivo single-dose acute toxicity, and in-vivo pharmacokinetic profiling of recently developed PfBS (pyrrolone-fused benzosuberene) MK2-inhibitor analogues against HNSCC. The PfBS MK2 inhibitor analogues impeded HPV+ and HPV- HNSCC cell proliferation and two-dimensional migration. Moreover, MK2-inhibitors lowered HNSCC cell clonogenic survival in a dose-dependent manner, significantly enhancing radiation-induced cell death via exerting radio-sensitization effects. Furthermore, γ-H2AX immunostaining revealed that PfBS analogues impaired DNA damage repair in HNSCC cells exposed to gamma radiation. In mice, PfBS MK2 inhibitors at 300 mg/kg were well-tolerated without any lethal effects. Pharmacokinetic studies showed that PfBS analogues exhibited rapid absorption (Tmax), adequate plasma concentration above the micromolar level (C0 or Cmax), limited tissue distribution (Vd), and faster elimination from the body (Cl). Overall, this study summarizes in-vitro efficacy, safety, and pharmacokinetics of developed MK2-inhibitors and opens doors for pharmacodynamics and mechanism of action study of most effective leads in HNSCC.
Collapse
Affiliation(s)
- Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Centre for Host-Microbiome Interactions, King's College London, London, London, United Kingdom
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Sumit Dhiman
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
| | - Yamini
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Pralay Das
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Zabeer Ahmed
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
| | - Utpal Nandi
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
- Chemical Sciences, Unified Academic Campus, Bose Institute, Kolkata, West Bengal, India
| | - Mahvash Tavassoli
- Centre for Host-Microbiome Interactions, King's College London, London, London, United Kingdom
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Ford JW, VanNatta JM, Mondal D, Lin CM, Deng Y, Bai R, Hamel E, Trawick ML, Pinney KG. Drug-Linker Constructs Bearing Unique Dual-Mechanism Tubulin Binding Payloads Tethered through Cleavable and Non-Cleavable Linkers. Tetrahedron 2025; 171:134350. [PMID: 39801742 PMCID: PMC11722312 DOI: 10.1016/j.tet.2024.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels. These payloads have been incorporated into a variety of drug-linker constructs utilizing the clinically relevant cathepsin B cleavable Val-Cit dipeptide linker, employed within several FDA approved ADCs, along with other non-cleavable constructs. Various synthetic strategies were evaluated to prepare these drug-linker constructs. Aniline-based payloads were incorporated utilizing the Val-Cit dipeptide linker similar to FDA approved ADCs such as Adcetris® (brentuximab vedotin). An additional self-immolative group, previously described in the literature for related model systems, was employed to tether the phenolic payloads. A variety of drug-linker constructs (with each bearing a unique dual mechanism payload) were synthesized and evaluated biologically for their enzyme-mediated release of payload and inhibition of tubulin polymerization. Following deactivation of the highly electrophilic maleimido terminus as its corresponding N-acetyl cysteine (NAC) derivative, the most promising construct (NAC-4) demonstrated approximately 90% release of an aniline-functionalized payload (1) upon treatment with cathepsins B or L over 90 minutes. Building on these promising results, future studies will examine the conjugation of drug-linker construct 4 to selected antibodies and engineered proteins and evaluate the biological activity of the resultant antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Jacob W Ford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Jennifer M VanNatta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Deboprosad Mondal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Chen-Ming Lin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
3
|
VanNatta JM, Niu H, Carlson GJ, Pinney KG. Application of Chlorosulfonyl Isocyanate (CSI) in the Synthesis of Fused Tetracyclic Ketone Ring Systems. J Org Chem 2024; 89:15636-15651. [PMID: 39388523 PMCID: PMC11708961 DOI: 10.1021/acs.joc.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chlorosulfonyl isocyanate (CSI) is a complex reagent capable of facilitating numerous synthetic transformations, including lactam/lactone formation, sulfonylation, Friedel-Crafts-type acylations, and cycloadditions. Annulation reactions to form nitrogen-, oxygen-, and sulfur-bearing heterocycles have been observed with CSI; however, the application of CSI toward the generation of fused cyclic ketone ring systems has not been previously reported. A serendipitous discovery of the pertinence of CSI occurred during a structure-activity relationship campaign around our established lead benzosuberene-based molecule that functions as a potent inhibitor of tubulin polymerization. The benzylic olefin within this molecule represents a promising moiety for further functionalization. CSI was initially investigated as a reagent to effect transformation of this olefin to its corresponding β-lactam functionality, but instead resulted in an unexpected tetracyclic fused ring system in high yield (88%). This finding led to an exploration of the reactivity of CSI with various arenes. Benzosuberene analogues with varying functionalizations were synthesized and treated with CSI, with all examples resulting in a fused ring system except those bearing electron-withdrawing groups. Notably, simplified arene structures with fewer substituents were also observed to undergo cyclization under these conditions. This strategy represents a promising approach for the synthesis of appropriately functionalized tetracyclic ring systems.
Collapse
Affiliation(s)
- Jennifer M. VanNatta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Haichan Niu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Graham J. Carlson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
4
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
5
|
Ren W, Vairin R, Ward JD, Francis R, VanNatta J, Bai R, Tankoano PE, Deng Y, Hamel E, Trawick ML, Pinney KG. Structure Guided Design, Synthesis, and Biological Evaluation of Oxetane-Containing Indole Analogues. Bioorg Med Chem 2023; 92:117400. [PMID: 37556912 PMCID: PMC10848874 DOI: 10.1016/j.bmc.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
The oxetane functional group offers a variety of potential advantages when incorporated within appropriate therapeutic agents as a ketone surrogate. OXi8006, a 2-aryl-3-aroyl-indole analogue, functions as a small-molecule inhibitor of tubulin polymerization that has a dual mechanism of action as both an antiproliferative agent and a tumor-selective vascular disrupting agent. Replacement of the bridging ketone moiety in OXi8006 with an oxetane functional group has expanded structure activity relationship (SAR) knowledge and provided insights regarding oxetane incorporation within this class of molecules. A new synthetic method using an oxetane-containing tertiary alcohol subjected to Lewis acid catalyzed conditions led to successful Friedel-Crafts alkylation and yielded fourteen new oxetane-containing indole-based molecules. This synthetic approach represents the first method to successfully install an oxetane ring at the 3-position of a 2-aryl-indole system. Several analogues showed potent cytotoxicity (micromolar GI50 values) against human breast cancer cell lines (MCF-7 and MDA-MB-231) and a pancreatic cancer cell line (PANC-1), although they proved to be ineffective as inhibitors of tubulin polymerization. Molecular docking studies comparing colchicine with the OXi8006-oxetane analogue 5m provided a rationale for the differential interaction of these molecules with the colchicine site on the tubulin heterodimer.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ricardo Francis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Jenny VanNatta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States.
| |
Collapse
|
6
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
7
|
Tang TM, Liu M, Wu H, Gou T, Hu X, Wang BQ, Hu P, Song F, Huang G. Pd-Catalyzed tandem C–C/C–O/C–H single bond cleavage of 3-allyloxybenzocyclobutenols. Org Chem Front 2021. [DOI: 10.1039/d0qo01619e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalyzed skeletal rearrangement of 3-allyloxybenzocyclobutenols was achieved, which involved tandem C–C/C–O bond cleavage and C–H allylic substitution.
Collapse
Affiliation(s)
- Tian-Mu Tang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Min Liu
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Ting Gou
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Xi Hu
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Ping Hu
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Feijie Song
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
8
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Giri R. Ni-Catalyzed Regioselective 1,2-Dialkylation of Alkenes Enabled by the Formation of Two C(sp 3)-C(sp 3) Bonds. J Am Chem Soc 2020; 142:20930-20936. [PMID: 33271014 PMCID: PMC7953840 DOI: 10.1021/jacs.0c09778] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We disclose a Ni-catalyzed vicinal difunctionalization of alkenes with benzyl halides and alkylzinc reagents, which produces products with two new alkyl-alkyl bonds. This alkene dialkylation is effective in combining secondary benzyl halides and secondary alkylzinc reagents with internal alkenes, which furnishes products with three contiguous all-carbon secondary stereocenters. The products can be readily elaborated to access complex tetralene, benzosuberene, and bicyclodecene cores. The reaction also features as the most efficient alkene difunctionalization process to date with catalyst loadings down to 500 ppm and the catalytic turnover number (TON) and turnover frequency (TOF) registering up to 2 × 103 and 165 h-1 at rt, respectively.
Collapse
Affiliation(s)
- Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Laura M Wickham
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Curr Top Med Chem 2019; 19:1289-1304. [PMID: 31210108 DOI: 10.2174/1568026619666190618130008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Microtubules are essential for the mitotic division of cells and have been an attractive target
for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells.
In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-,
vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including
inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to
cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would
provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a
series of challenges about tubulin target druggability.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Liang Tian
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Maguire CJ, Carlson GJ, Ford JW, Strecker TE, Hamel E, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse α-conformationally restricted chalcones and related analogues. MEDCHEMCOMM 2019; 10:1445-1456. [PMID: 31534659 PMCID: PMC6734540 DOI: 10.1039/c9md00127a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Numerous members of the combretastatin and chalcone families of natural products function as inhibitors of tubulin polymerization through a binding interaction at the colchicine site on β-tubulin. These molecular scaffolds inspired the development of many structurally modified derivatives and analogues as promising anticancer agents. A productive design blueprint that involved molecular hybridization of the pharmacophore moieties of combretastatin A-4 (CA4) and the chalcones led to the discovery of two promising lead molecules referred to as KGP413 and SD400. The corresponding water-soluble phosphate prodrug salts of KGP413 and SD400 selectively damaged tumor-associated vasculature, thus highlighting the potential development of these molecules as vascular disrupting agents (VDAs). These previous studies prompted our current investigation of conformationally restricted chalcones. Herein, we report the synthesis of cyclic chalcones and related analogues that incorporate structural motifs of CA4, and evaluation of their cytotoxicity against human cancer cell lines [NCI-H460 (lung), DU-145 (prostate), and SK-OV-3 (ovarian)]. While these molecules proved inactive as inhibitors of tubulin polymerization (IC50 > 20 μM), eight molecules demonstrated good antiproliferative activity (GI50 < 20 μM) against all three cancer cell lines, and compounds 2j and 2l demonstrated sub-micromolar cytotoxicity. To the best of our knowledge these molecules represent the most potent (based on GI50) cyclic chalcones known to date, and are promising lead molecules for continued investigation.
Collapse
Affiliation(s)
- Casey J Maguire
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Graham J Carlson
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Jacob W Ford
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Ernest Hamel
- Screening Technologies Branch , Developmental Therapeutics Program , Division of Cancer Treatment and Diagnosis , National Cancer Institute , Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD 21702 , USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| |
Collapse
|
11
|
Niu H, Strecker TE, Gerberich JL, Campbell JW, Saha D, Mondal D, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Structure Guided Design, Synthesis, and Biological Evaluation of Novel Benzosuberene Analogues as Inhibitors of Tubulin Polymerization. J Med Chem 2019; 62:5594-5615. [PMID: 31059248 DOI: 10.1021/acs.jmedchem.9b00551] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A promising design paradigm for small-molecule inhibitors of tubulin polymerization that bind to the colchicine site draws structural inspiration from the natural products colchicine and combretastatin A-4 (CA4). Our previous studies with benzocycloalkenyl and heteroaromatic ring systems yielded promising inhibitors with dihydronaphthalene and benzosuberene analogues featuring phenolic (KGP03 and KGP18) and aniline (KGP05 and KGP156) congeners emerging as lead agents. These molecules demonstrated dual mechanism of action, functioning both as potent vascular disrupting agents (VDAs) and as highly cytotoxic anticancer agents. A further series of analogues was designed to extend functional group diversity and investigate regioisomeric tolerance. Ten new molecules were effective inhibitors of tubulin polymerization (IC50 < 5 μM) with seven of these exhibiting highly potent activity comparable to CA4, KGP18, and KGP03. For one of the most effective agents, dose-dependent vascular shutdown was demonstrated using dynamic bioluminescence imaging in a human prostate tumor xenograft growing in a rat.
Collapse
Affiliation(s)
- Haichan Niu
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Jeni L Gerberich
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - James W Campbell
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Debabrata Saha
- Department of Radiology Oncology, Division of Molecular Radiation Biology , The University of Texas Southwestern Medical Center , 2201 Inwood Road , Dallas , Texas 75390-9187 , United States
| | - Deboprosad Mondal
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis , National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health , Frederick , Maryland 21702 , United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States.,Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , California 94080 , United States
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| |
Collapse
|
12
|
Mondal D, Niu H, Pinney KG. Efficient Synthetic Methodology for the Construction of Dihydronaphthalene and Benzosuberene Molecular Frameworks. Tetrahedron Lett 2018; 60:397-401. [PMID: 31061544 DOI: 10.1016/j.tetlet.2018.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzosuberene analogues (1 and 2) and dihydronaphthalene analogues (3 and 4) function as potent inhibitors of tubulin polymerization, demonstrate pronounced cytotoxicity (low nM to pM range) against human cancer cell lines, and are promising vascular disrupting agents (VDAs). As such, these compounds represent lead anticancer agents with potential translatability towards the clinic. Methodology previously established by us (and others) facilitated synthetic access to a variety of structural and functional group modifications necessary to explore structure activity relationship considerations directed towards the development of these (and related) molecules as potential therapeutic agents. During the course of these studies it became apparent that the availability of synthetic methodology to facilitate direct conversion of the phenolic-based compounds to their corresponding aniline congeners would be beneficial. Accordingly, modified synthetic routes toward these target phenols (benzosuberene 1 and dihydronaphthalene 3) were developed in order to improve scalability and overall yield [45-57% (1) and 32% (3)]. Moreover, benzosuberene-based phenolic analogue 1 and separately dihydronaphthalene-based phenolic analogue 3 were successfully converted into their corresponding aniline analogues 2 and 4 in good yield (>60% over three steps) using a palladium catalyzed amination reaction.
Collapse
Affiliation(s)
- Deboprosad Mondal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| | - Haichan Niu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| |
Collapse
|
13
|
Mondal D, Ford J, Pinney KG. Improved Methodology for the Synthesis of a Cathepsin B Cleavable Dipeptide Linker, Widely Used in Antibody-Drug Conjugate Research. Tetrahedron Lett 2018; 59:3594-3599. [PMID: 31156276 PMCID: PMC6541422 DOI: 10.1016/j.tetlet.2018.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) represent an emerging class of biopharmaceutical agents that deliver highly potent anticancer agents (payloads) selectively to tumors or components associated with the tumor microenvironment. The linker, responsible for the connection between the antibody and payload, is a crucial component of ADCs. In certain examples the linker is composed of a cleavable short peptide which imparts an additional aspect of selectivity. Especially prevalent is the cathepsin B cleavable Mc-Val-Cit-PABOH linker utilized in many pre-clinical ADC candidates, as well as the FDA approved ADC ADCETRIS® (brentuximab vedotin). An alternative route for the synthesis of the cathepsin B cleavable Mc-Val-Cit-PABOH linker is reported herein that involved six steps from l-Citrulline and proceeded with a 50% overall yield. In this modified route, the spacer (a para-aminobenzyl alcohol moiety) was incorporated via HATU coupling followed by dipeptide formation. Importantly, this route avoided undesirable epimerization and proceeded with improved overall yield. Utilizing this methodology, a drug-linker construct incorporating a potent small-molecule inhibitor of tubulin polymerization (referred to as KGP05), was synthesized as a representative example.
Collapse
Affiliation(s)
- Deboprosad Mondal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| | - Jacob Ford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| |
Collapse
|
14
|
Maguire CJ, Chen Z, Mocharla VP, Sriram M, Strecker TE, Hamel E, Zhou H, Lopez R, Wang Y, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis of dihydronaphthalene analogues inspired by combretastatin A-4 and their biological evaluation as anticancer agents. MEDCHEMCOMM 2018; 9:1649-1662. [PMID: 30429970 PMCID: PMC6201230 DOI: 10.1039/c8md00322j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have provided inspiration for the discovery and development of a wide array of derivatives and analogues that inhibit tubulin polymerization through a binding interaction at the colchicine site on β-tubulin. A water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) has demonstrated the ability to selectively damage tumor-associated vasculature and ushered in a new class of developmental anticancer agents known as vascular disrupting agents (VDAs). Through a long-term program of structure activity relationship (SAR) driven inquiry, we discovered that the dihydronaphthalene molecular scaffold provided access to small-molecule inhibitors of tubulin polymerization. In particular, a dihydronaphthalene analogue bearing a pendant trimethoxy aryl ring (referred to as KGP03) and a similar aroyl ring (referred to as KGP413) were potent inhibitors of tubulin polymerization (IC50 = 1.0 and 1.2 μM, respectively) and displayed low nM cytotoxicity against human cancer cell lines. In order to enhance water-solubility for in vivo evaluation, the corresponding phosphate prodrug salts (KGP04 and KGP152, respectively) were synthesized. In a preliminary in vivo study in a SCID-BALB/c mouse model bearing the human breast tumor MDA-MB-231-luc, a 99% reduction in signal was observed with bioluminescence imaging (BLI) 4 h after IP administration of KGP152 (200 mg kg-1) indicating reduced tumor blood flow. In a separate study, disruption of tumor-associated blood flow in a Fischer rat bearing an A549-luc human lung tumor was observed by color Doppler ultrasound following administration of KGP04 (15 mg kg-1).
Collapse
Affiliation(s)
- Casey J Maguire
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Zhi Chen
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Vani P Mocharla
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Madhavi Sriram
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Ernest Hamel
- Screening Technologies Branch , Developmental Therapeutics Program , Division of Cancer Treatment and Diagnosis , National Cancer Institute , Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD 21702 , USA
| | - Heling Zhou
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - Ramona Lopez
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - Yifan Wang
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
- Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , CA 94080 , USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| |
Collapse
|
15
|
Zhang C, Xu D, Wang J, Kang C. Efficient Synthesis and Biological Activity of Novel Indole Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363217120465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhu L, Luo K, Li K, Jin Y, Lin J. Design, synthesis and biological evaluation of 2-phenylquinoline-4-carboxamide derivatives as a new class of tubulin polymerization inhibitors. Bioorg Med Chem 2017; 25:5939-5951. [DOI: 10.1016/j.bmc.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|
17
|
Affiliation(s)
- Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| |
Collapse
|
18
|
Song MY, Cao CY, He QR, Dong QM, Li D, Tang JJ, Gao JM. Constructing novel dihydrofuran and dihydroisoxazole analogues of isocombretastatin-4 as tubulin polymerization inhibitors through [3+2] reactions. Bioorg Med Chem 2017; 25:5290-5302. [PMID: 28803799 DOI: 10.1016/j.bmc.2017.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
[3+2] reactions play a key role in constructing various pharmaceutical moleculars. In this study, using Mn(OAc)3 mediated and 1,3-dipolar [3+2] cyclization reactions, 38 novel dihydrofuran and dihydroisoxazole analogues of isoCA-4 were synthesized as inhibitors of tubulin polymerization. Among them, compound 6g was found to be the most potent cytotoxic agents against PC-3 cells with IC50 value of 0.47μM, and compound 5p exhibted highest activity on HeLa cells with IC50 vaule of 2.32µM. Tubulin polymerization assay revealed that 6g was a dose-dependent and effective inhibitor of tubulin assembly. Immunohistochemistry studies and cell cycle distribution analysis indicated that 6g severely disrupted microtubule network and significantly arrested most cells in the G2/M phase of the cell cycle in PC-3 cells. In addition, molecular docking studies showed that two chiral isomers of 6g can bind efficiently and similarly at colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Ming-Yu Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qing-Miao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
19
|
Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med Chem 2017; 9:1765-1794. [DOI: 10.4155/fmc-2017-0100] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vital roles of microtubule in mitosis and cell division make it an attractive target for antitumor therapy. Colchicine binding site of tubulin is one of the most important pockets that have been focused on to design tubulin-destabilizing agents. Over the past few years, a large number of colchicine binding site inhibitors (CBSIs) have been developed inspired by natural products or synthetic origins, and many moieties frequently used in these CBSIs are structurally in common. In this review, we will classify the CBSIs into classical CBSIs and nonclassical CBSIs according to their spatial conformations and binding modes with tubulin, and highlight the privileged structures from these CBSIs in the development of tubulin inhibitors targeting the colchicine binding site.
Collapse
|
20
|
Herdman CA, Strecker TE, Tanpure RP, Chen Z, Winters A, Gerberich J, Liu L, Hamel E, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization. MEDCHEMCOMM 2016; 7:2418-2427. [PMID: 28217276 PMCID: PMC5308454 DOI: 10.1039/c6md00459h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and CA4 led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KGP18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administered as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC50 < 5 μM), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC50 = 11 μM) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7-luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control.
Collapse
Affiliation(s)
- Christine A Herdman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajendra P Tanpure
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Zhi Chen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Alex Winters
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Li Liu
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States; Mateon Therapeutics, Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
21
|
Chang MY, Cheng YC. Synthesis of Substituted Tetralins and Benzosuberans via BF3·OEt2-Mediated Formal (4 + 2) and (5 + 2) Stereocontrolled Cycloaddition of 4-Alkenols with Veratrol. Org Lett 2016; 18:608-11. [DOI: 10.1021/acs.orglett.5b03696] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meng-Yang Chang
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Chieh Cheng
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|