1
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
2
|
Rayenko GF, Avksentiev AS, Saberov VS, Rusanov EB, Ryabitsky AB, Shishkina SV, Komarovska‐Porokhnyavets OZ, Lubenets VI, Korotkikh NI. Synthesis and Antimicrobial Activity of Carbene Complexesof the Imidazole, Benzimidazole and 1,2,4‐Triazole Series. ChemistrySelect 2023. [DOI: 10.1002/slct.202203143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Gennady F. Rayenko
- Department of Chemistry of Heterocyclic Compounds L.M.Litvinenko Institute of Physical Organic and Coal Chemistry NAS of Ukraine 50 Kharkiv road Kyiv 02160 Ukraine
| | - Alexandr S. Avksentiev
- Laboratory of Chemistry of Stable Carbenes Institute of Organic Chemistry NAS of Ukraine 5 Murmanskaya Str. Kyiv 02660 Ukraine
| | - Vagiz Sh. Saberov
- Laboratory of Chemistry of Stable Carbenes Institute of Organic Chemistry NAS of Ukraine 5 Murmanskaya Str. Kyiv 02660 Ukraine
| | - Eduard B. Rusanov
- Department of Physical-Chemical Methods of Research Institute of Organic Chemistry NAS of Ukraine 5 Murmanskaya Str. Kyiv 02660 Ukraine
| | | | - Svetlana V. Shishkina
- Department of Physical-Chemical Methods of Research Institute of Organic Chemistry NAS of Ukraine 5 Murmanskaya Str. Kyiv 02660 Ukraine
| | | | - Vira I. Lubenets
- Lviv Polytechnic National University 12 Bandera Str. Lviv 79013 Ukraine
| | - Nikolai I. Korotkikh
- Department of Chemistry of Heterocyclic Compounds L.M.Litvinenko Institute of Physical Organic and Coal Chemistry NAS of Ukraine 50 Kharkiv road Kyiv 02160 Ukraine
- Laboratory of Chemistry of Stable Carbenes Institute of Organic Chemistry NAS of Ukraine 5 Murmanskaya Str. Kyiv 02660 Ukraine
| |
Collapse
|
3
|
Wang X, Zhang C, Madji R, Voros C, Mazères S, Bijani C, Deraeve C, Cuvillier O, Gornitzka H, Maddelein ML, Hemmert C. N-Heterocyclic Carbene-Iridium Complexes as Photosensitizers for In Vitro Photodynamic Therapy to Trigger Non-Apoptotic Cell Death in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020691. [PMID: 36677751 PMCID: PMC9861386 DOI: 10.3390/molecules28020691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
A series of seven novel iridium complexes were synthetized and characterized as potential photosensitizers for photodynamic therapy (PDT) applications. Among them, four complexes were evaluated in vitro for their anti-proliferative activity with and without irradiation on a panel of five cancer cell lines, namely PC-3 (prostate cancer), T24 (bladder cancer), MCF7 (breast cancer), A549 (lung cancer) and HeLa (cervix cancer), and two non-cancerous cell models (NIH-3T3 fibroblasts and MC3T3 osteoblasts). After irradiation at 458 nm, all tested complexes showed a strong selectivity against cancer cells, with a selectivity index (SI) ranging from 8 to 34 compared with non-cancerous cells. The cytotoxic effect of all these complexes was found to be independent of the anti-apoptotic protein Bcl-xL. The compound exhibiting the best selectivity, complex 4a, was selected for further investigations. Complex 4a was mainly localized in the mitochondria. We found that the loss of cell viability and the decrease in ATP and GSH content induced by complex 4a were independent of both Bcl-xL and caspase activation, leading to a non-apoptotic cell death. By counteracting the intrinsic or acquired resistance to apoptosis associated with cancer, complex 4a could be an interesting therapeutic alternative to be studied in preclinical models.
Collapse
Affiliation(s)
- Xing Wang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Chen Zhang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Ryma Madji
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Camille Voros
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Christian Bijani
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Céline Deraeve
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Olivier Cuvillier
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Heinz Gornitzka
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Marie-Lise Maddelein
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Catherine Hemmert
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| |
Collapse
|
4
|
Synthesis, characterization, in vitro cytotoxic activity and molecular docking of dinuclear gold(I) complexes with terephthalaldehyde bis(thiosemicarbazones). Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ftouh S, Bourgeade-Delmas S, Belkadi M, Deraeve C, Hemmert C, Valentin A, Gornitzka H. Synthesis, Characterization, and Antileishmanial Activity of Neutral Gold(I) Complexes with N-heterocyclic Carbene Ligands Bearing Sulfur-Containing Side Arms. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Soumia Ftouh
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
- (LSPBE), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB,
B.P 1505, El Mnaouer, Oran 31000, Algeria
| | | | - Mohamed Belkadi
- (LSPBE), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB,
B.P 1505, El Mnaouer, Oran 31000, Algeria
| | - Céline Deraeve
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | | | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse 31400, France
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
6
|
Bugaenko DI, Yurovskaya MA, Karchava AV. Reaction of Pyridine‐
N
‐Oxides with Tertiary sp
2
‐
N
‐Nucleophiles: An Efficient Synthesis of Precursors for
N
‐(Pyrid‐2‐yl)‐Substituted
N
‐Heterocyclic Carbenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Hybrid Gold(I) NHC-Artemether Complexes to Target Falciparum Malaria Parasites. Molecules 2020; 25:molecules25122817. [PMID: 32570872 PMCID: PMC7356589 DOI: 10.3390/molecules25122817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
The emergence of Plasmodium falciparum parasites, responsible for malaria disease, resistant to antiplasmodial drugs including the artemisinins, represents a major threat to public health. Therefore, the development of new antimalarial drugs or combinations is urgently required. In this context, several hybrid molecules combining a dihydroartemisinin derivative and gold(I) N-heterocyclic carbene (NHC) complexes have been synthesized based on the different modes of action of the two compounds. The antiplasmodial activity of these molecules was assessed in vitro as well as their cytotoxicity against mammalian cells. All the hybrid molecules tested showed efficacy against P. falciparum, in a nanomolar range for the most active, associated with a low cytotoxicity. However, cross-resistance between artemisinin and these hybrid molecules was evidenced. These results underline a fear about the risk of cross-resistance between artemisinins and new antimalarial drugs based on an endoperoxide part. This study thus raises concerns about the use of such molecules in future therapeutic malaria policies.
Collapse
|
8
|
Haziz UF, Haque RA, Zhan SZ, Razali MR. Mononuclear Gold(I) bis-N-heterocyclic carbene: Synthesis and photophysical study. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Ouji M, Delmas SB, Álvarez ÁF, Augereau J, Valentin A, Hemmert C, Gornitzka H, Benoit‐Vical F. Design, Synthesis and Efficacy of Hybrid Triclosan‐gold Based Molecules on Artemisinin‐resistant
Plasmodium falciparum
and
Leishmania infantum
Parasites. ChemistrySelect 2020. [DOI: 10.1002/slct.201904345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Manel Ouji
- LCC–CNRS Université de Toulouse, CNRS, Toulouse France
| | | | | | | | - Alexis Valentin
- UMR 152 PharmaDev Université de Toulouse, IRD, UPS, Toulouse France
| | | | | | - Françoise Benoit‐Vical
- LCC–CNRS Université de Toulouse, CNRS, Toulouse France
- INSERM Institut National de la Santé et de la Recherche Médicale France
| |
Collapse
|
10
|
|
11
|
Recent progress in silver(I)-, gold(I)/(III)- and palladium(II)-N-heterocyclic carbene complexes: A review towards biological perspectives. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev 2019; 48:447-462. [DOI: 10.1039/c8cs00570b] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review covers the recent advances made in the study of gold complexes containing N-heterocyclic carbene ligands with biological properties.
Collapse
Affiliation(s)
- Malka Mora
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Renso Visbal
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
- Departamento de Gestión Industrial
| |
Collapse
|
13
|
Zhang C, Maddelein ML, Wai-Yin Sun R, Gornitzka H, Cuvillier O, Hemmert C. Pharmacomodulation on Gold-NHC complexes for anticancer applications - is lipophilicity the key point? Eur J Med Chem 2018; 157:320-332. [PMID: 30099254 DOI: 10.1016/j.ejmech.2018.07.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
A series of four new mononuclear cationic gold(I) complexes containing nitrogen functionalized N-heterocyclic carbenes (NHCs) was synthesized and fully characterized by spectroscopic methods. The X-ray structures of three complexes are presented. These lipophilic gold(I) complexes originate from a pharmacomodulation of previously described gold(I)-NHC complexes, by replacing an aliphatic spacer with an aromatic one. The Log P values of the resulting complexes increased by 0.7-1.5, depending on the substituents in comparison to the aliphatic-linker systems. The new series of complexes has been investigated in vitro for their anti-cancer activities in PC-3 (prostate cancer) and T24 (bladder cancer) cell lines and in the non-cancerous MC3T3 (osteoblast) cell line. All tested complexes show high activities against the cancer cell lines with GI50 values lower than 500 nM. One complex (11) has been selected for further investigations. It has been tested in vitro in six cancer cell lines from different origins (prostate, bladder, lung, bone, liver and breast) and two non-cancerous cell lines (osteoblasts, fibroblasts). Moreover, cellular uptake measurements were indicative of a good bioavailability. By various biochemical assays, this complex was found to effectively inhibit the thioredoxin reductase (TrxR) and its cytotoxicity towards prostate PC-3, bladder T24 and liver HepG2 cells was found to be ROS-dependent.
Collapse
Affiliation(s)
- Chen Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Lise Maddelein
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raymond Wai-Yin Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
14
|
Zhang C, Hemmert C, Gornitzka H, Cuvillier O, Zhang M, Sun RWY. Cationic and Neutral N-Heterocyclic Carbene Gold(I) Complexes: Cytotoxicity, NCI-60 Screening, Cellular Uptake, Inhibition of Mammalian Thioredoxin Reductase, and Reactive Oxygen Species Formation. ChemMedChem 2018; 13:1218-1229. [PMID: 29603648 DOI: 10.1002/cmdc.201800181] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 01/27/2023]
Abstract
A structurally diverse library of 14 gold(I) cationic bis(NHC) and neutral mono(NHC) complexes (NHC: N-heterocyclic carbene) was synthesized and characterized in this work. Four of them were new cationic gold(I) complexes containing functionalized NHCs, and their X-ray crystal structures are presented herein. All of the complexes were investigated for their anticancer activities in four cancer cell lines, including a cisplatin-resistant variant, and a noncancerous cell line. Seven of the cationic gold(I) complexes were found to display high and specific cytotoxic activities toward cancer cells. Two of them were even able to overcome cisplatin resistance. Two highly potent cationic complexes (11 and 15) were also submitted to the NCI-60 cancer panel for further cytotoxicity evaluation. Complex 15 showed a surprisingly high potency toward leukemia among the nine examined cancer subtypes, particularly toward the CCRF-CEM leukemia cell line with a concentration for 50 % inhibition of growth down to 79.4 nm. In addition, cationic complex 13, which demonstrated a remarkable cytotoxicity against hepatocellular carcinoma, was selected to obtain insight into the mechanistic aspects in HepG2 cells. Cellular uptake measurements were indicative of good bioavailability. By various biochemical assays, this complex was found to effectively inhibit thioredoxin reductase and its cytotoxicity toward HepG2 cells was found to be reactive oxygen species dependent.
Collapse
Affiliation(s)
- Chen Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ming Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, P.R. China
| | - Raymond Wai-Yin Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, P.R. China
| |
Collapse
|
15
|
Diehl T, Krause MTS, Ueberlein S, Becker S, Trommer A, Schnakenburg G, Engeser M. Synthesis of hydroxyl-functionalized N-heterocyclic carbene gold(i) complexes and peptide conjugates. Dalton Trans 2018; 46:2988-2997. [PMID: 28198476 DOI: 10.1039/c6dt04834j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis and characterization of a series of new cationic gold(i) complexes with hydroxyl-functionalized N-heterocyclic carbene (NHC) ligands is described. They are valuable building blocks for further derivatization: as a first example, coupling with amino acids and a dipeptide, respectively, successfully results in amino acid and peptide conjugates that are hard to obtain by other synthetic routes.
Collapse
Affiliation(s)
- Tobias Diehl
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Melanie T S Krause
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Sven Ueberlein
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Stefanie Becker
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Aline Trommer
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Marianne Engeser
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
16
|
Synthesis, characterization, and antileishmanial activity of neutral N-heterocyclic carbenes gold(I) complexes. Eur J Med Chem 2017; 143:1635-1643. [PMID: 29133045 DOI: 10.1016/j.ejmech.2017.10.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023]
Abstract
A series of five new mononuclear neutral gold(I) complexes containing N-heterocyclic carbenes (NHCs) was synthesized and fully characterized by spectroscopic methods. The X-ray structures of four complexes are presented. These gold(I) complexes together with four other neutral gold(I)-NHC complexes previously described were evaluated in vitro against Leishmania infantum promastigotes and axenic amastigotes. Moreover, their cytotoxicity was assessed on the murine macrophages J774A.1. Except one complex (10), eight gold(I)-NHC-Cl complexes show potent activity against the pathological relevant form of L. infantum amastigote with IC50 in the low micromolar and submicromolar range and five of them exhibit a SI close to 10. The lead-complex 11 displays a very high and selective activity (IC50 = 190 nM, SI = 40.29) and constitutes the best promising gold(I)-based drug of this series.
Collapse
|
17
|
Tapanelli S, Habluetzel A, Pellei M, Marchiò L, Tombesi A, Capparè A, Santini C. Novel metalloantimalarials: Transmission blocking effects of water soluble Cu(I), Ag(I) and Au(I) phosphane complexes on the murine malaria parasite Plasmodium berghei. J Inorg Biochem 2016; 166:1-4. [PMID: 27815977 DOI: 10.1016/j.jinorgbio.2016.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022]
Abstract
The water soluble phosphane complexes [M(L)4]PF6 (M=Cu(I), Ag(I)) and [Au(L)4]Cl (L=thp (tris(hydroxymethyl)phosphane) or PTA (1,3,5-triaza-7-phosphaadamantane)) showed notable in vitro activity against Plasmodium early sporogonic stages, the sexual forms of the malaria parasite that are responsible for infection of the mosquito vector. Effects varied according to both, the type of metal and phosphane ligands. [Ag(thp)4]PF6 was the best performing complex exhibiting a half inhibitory concentration (IC50) value in the low micromolar range (0.3-15.6μM). The silver complex [Ag(thp)4]PF6 was characterized by X-ray crystallography revealing that the structure comprises the cationic complex [Ag(thp)4]+, the PF6- anion, and a water molecule of crystallization. Our results revealed that Cu(I), Ag(I) and Au(I) phosphanes complexes elicited similar activity profiles showing potential for the development of antimalarial, transmission blocking compounds. Molecules targeting the sexual parasite stages in the human and/or mosquito host are urgently needed to complement current artemisinin based treatments and next generation antimalarials in a vision not only to cure the disease but to interrupt its transmission.
Collapse
Affiliation(s)
- Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza dei Costanti, Camerino, MC, Italy
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza dei Costanti, Camerino, MC, Italy.
| | - Maura Pellei
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy.
| | - Luciano Marchiò
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17A, Parma, Italy
| | - Alessia Tombesi
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy
| | - Ambra Capparè
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy
| | - Carlo Santini
- School of Science and Technology - Chemistry Division, University of Camerino, via S. Agostino 1, Camerino, MC, Italy
| |
Collapse
|