1
|
Pastukhov A, Paliienko K, Pozdnyakova N, Krisanova N, Dudarenko M, Kalynovska L, Tarasenko A, Gnatyuk O, Dovbeshko G, Borisova T. Disposable facemask waste combustion emits neuroactive smoke particulate matter. Sci Rep 2023; 13:17771. [PMID: 37853141 PMCID: PMC10584905 DOI: 10.1038/s41598-023-44972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
Tremendous deposits of disposable medical facemask waste after the COVID-19 pandemic require improvement of waste management practice according to WHO report 2022, moreover facemasks are still in use around the world to protect against numerous airborne infections. Here, water-suspended smoke preparations from the combustion of disposable medical facemasks (polypropylene fibers) were collected; size, zeta potential, surface groups of smoke particulate matter were determined by dynamic light scattering, FTIR and Raman spectroscopy, and their optical properties were characterized. Neurochemical study using nerve terminals isolated from rat cortex revealed a significant decrease in the initial rate of the uptake/accumulation of excitatory and inhibitory neurotransmitters, L-[14C]glutamate and [3H]GABA, and exocytotic release, and also an increase in the extracellular level of these neurotransmitters. Fluorescent measurements revealed that ROS generation induced by hydrogen peroxide and glutamate receptor agonist kainate decreased in nerve terminals. A decrease in the membrane potential of nerve terminals and isolated neurons, the mitochondrial potential and synaptic vesicle acidification was also shown. Therefore, accidental or intentional utilization of disposable medical facemask waste by combustion results in the release of neuroactive ultrafine particulate matter to the environment, thereby contributing to plastic-associated pollution of air and water resources and neuropathology development and expansion.
Collapse
Affiliation(s)
- Artem Pastukhov
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine.
| | - Natalia Pozdnyakova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Natalia Krisanova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Lilia Kalynovska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Olena Gnatyuk
- Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, Kyiv, 03028, Ukraine
| | - Galina Dovbeshko
- Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, Kyiv, 03028, Ukraine
| | - Tatiana Borisova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| |
Collapse
|
2
|
Borisova T, Pozdnyakova N, Dudarenko M, Krisanova N, Andronati S. GABAA receptor agonist cinazepam and its active metabolite 3-hydroxyphenazepam act differently at the presynaptic site. Eur Neuropsychopharmacol 2021; 45:39-51. [PMID: 33820715 DOI: 10.1016/j.euroneuro.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cinazepam C19H14BrClN2O5, ("LevanaⓇ ІC") a partial GABAA receptor agonist, and its active metabolite 3-hydroxyphenazepam C15H10BrClN2O2 were comparatively assessed in vitro using nerve terminals isolated from rat cortex (synaptosomes). At the presynaptic site, cinazepam (100 and 200 µM) facilitated synaptosomal transporter-mediated [3H]GABA uptake by enhancing both the initial rate and accumulation, and decreased the ambient level and transporter-mediated release of [3H]GABA. Whereas, 3-hydroxyphenazepam decreased the uptake and did not change the ambient synaptosomal level and transporter-mediated release of [3H]GABA. To exclude GABA transporter influence, NO-711, the transporter blocker, was applied and it was found that exocytotic release of [3H]GABA decreased, whereas tonic release of [3H]GABA was not changed in the presence of both cinazepam or 3-hydroxyphenazepam after treatment of synaptosomes with NO-711. In fluorimetric studies using potential- and pH-sensitive dyes rhodamine 6G and acridine orange, respectively, it was found that cinazepam hyperpolarized the synaptosomal plasma membrane, and increased synaptic vesicle acidification, whereas, 3-hydroxyphenazepam demonstrated opposite effects on these parameters. Therefore, action of cinazepam and its active metabolite 3-hydroxyphenazepam on GABAergic neurotransmission was different. Therapeutic effects of cinazepam can be associated with its ability to hyperpolarize the plasma membrane, to increase synaptic vesicle acidification and capacity of its active metabolite 3-hydroxyphenazepam to inhibit GABA transporter functioning.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Natalia Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Sergey Andronati
- The Department of Medicinal Chemistry, A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa, Ukraine.
| |
Collapse
|
3
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|