1
|
Izquierdo M, Lin D, O'Neill S, Webster LA, Paterson C, Thomas J, Aguado ME, Colina Araújo E, Alpízar-Pedraza D, Joji H, MacLean L, Hope A, Gray DW, Zoltner M, Field MC, González-Bacerio J, De Rycker M. Identification of a potent and selective LAPTc inhibitor by RapidFire-Mass Spectrometry, with antichagasic activity. PLoS Negl Trop Dis 2024; 18:e0011956. [PMID: 38359089 PMCID: PMC10901353 DOI: 10.1371/journal.pntd.0011956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and leads to ~10,000 deaths each year. Nifurtimox and benznidazole are the only two drugs available but have significant adverse effects and limited efficacy. New chemotherapeutic agents are urgently required. Here we identified inhibitors of the acidic M17 leucyl-aminopeptidase from T. cruzi (LAPTc) that show promise as novel starting points for Chagas disease drug discovery. METHODOLOGY/PRINCIPAL FINDINGS A RapidFire-MS screen with a protease-focused compound library identified novel LAPTc inhibitors. Twenty-eight hits were progressed to the dose-response studies, from which 12 molecules inhibited LAPTc with IC50 < 34 μM. Of these, compound 4 was the most potent hit and mode of inhibition studies indicate that compound 4 is a competitive LAPTc inhibitor, with Ki 0.27 μM. Compound 4 is selective with respect to human LAP3, showing a selectivity index of >500. Compound 4 exhibited sub-micromolar activity against intracellular T. cruzi amastigotes, and while the selectivity-window against the host cells was narrow, no toxicity was observed for un-infected HepG2 cells. In silico modelling of the LAPTc-compound 4 interaction is consistent with the competitive mode of inhibition. Molecular dynamics simulations reproduce the experimental binding strength (-8.95 kcal/mol), and indicate a binding mode based mainly on hydrophobic interactions with active site residues without metal cation coordination. CONCLUSIONS/SIGNIFICANCE Our data indicates that these new LAPTc inhibitors should be considered for further development as antiparasitic agents for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Maikel Izquierdo
- Centre for Protein Studies, Faculty of Biology, University of Havana, La Habana, Cuba
| | - De Lin
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Sandra O'Neill
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Lauren A Webster
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Christy Paterson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Mirtha Elisa Aguado
- Centre for Protein Studies, Faculty of Biology, University of Havana, La Habana, Cuba
| | - Enrique Colina Araújo
- Department of Biochemistry, Faculty of Biology, University of Havana, La Habana, Cuba
| | | | - Halimatu Joji
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Lorna MacLean
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Anthony Hope
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David W Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Jorge González-Bacerio
- Centre for Protein Studies, Faculty of Biology, University of Havana, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, La Habana, Cuba
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
2
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
3
|
Hoff CC, Azevedo MF, Thurler AB, Maluf SEC, Melo PMS, del Rivero MA, González-Bacerio J, Carmona AK, Budu A, Gazarini ML. Overexpression of Plasmodium falciparum M1 Aminopeptidase Promotes an Increase in Intracellular Proteolysis and Modifies the Asexual Erythrocytic Cycle Development. Pathogens 2021; 10:pathogens10111452. [PMID: 34832608 PMCID: PMC8618464 DOI: 10.3390/pathogens10111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.
Collapse
Affiliation(s)
- Carolina C. Hoff
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
| | - Mauro F. Azevedo
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
| | - Adriana B. Thurler
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Sarah El Chamy Maluf
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Pollyana M. S. Melo
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Maday Alonso del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, La Habana 10400, Cuba; (M.A.d.R.); (J.G.-B.)
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, La Habana 10400, Cuba; (M.A.d.R.); (J.G.-B.)
| | - Adriana K. Carmona
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
- Correspondence: (A.B.); (M.L.G.)
| | - Marcos L. Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
- Correspondence: (A.B.); (M.L.G.)
| |
Collapse
|
4
|
KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity. Life (Basel) 2021; 11:life11101037. [PMID: 34685408 PMCID: PMC8540442 DOI: 10.3390/life11101037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite’s leucyl-aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009 are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting point compound for the rational design of drugs through further optimization.
Collapse
|
5
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Mapping the substrate specificity of the Plasmodium M1 and M17 aminopeptidases. Biochem J 2021; 478:2697-2713. [PMID: 34133730 PMCID: PMC8286833 DOI: 10.1042/bcj20210172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/02/2023]
Abstract
During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.
Collapse
|
7
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
8
|
Driving antimalarial design through understanding of target mechanism. Biochem Soc Trans 2020; 48:2067-2078. [PMID: 32869828 PMCID: PMC7609028 DOI: 10.1042/bst20200224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
Malaria continues to be a global health threat, affecting approximately 219 million people in 2018 alone. The recurrent development of resistance to existing antimalarials means that the design of new drug candidates must be carefully considered. Understanding of drug target mechanism can dramatically accelerate early-stage target-based development of novel antimalarials and allows for structural modifications even during late-stage preclinical development. Here, we have provided an overview of three promising antimalarial molecular targets, PfDHFR, PfDHODH and PfA-M1, and their associated inhibitors which demonstrate how mechanism can inform drug design and be effectively utilised to generate compounds with potent inhibitory activity.
Collapse
|
9
|
Aminobenzosuberone derivatives as PfA-M1 inhibitors: Molecular recognition and antiplasmodial evaluation. Bioorg Chem 2020; 98:103750. [DOI: 10.1016/j.bioorg.2020.103750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
|
10
|
Localization and enzyme kinetics of aminopeptidase N3 from Toxoplasma gondii. Parasitol Res 2019; 119:357-364. [PMID: 31836922 DOI: 10.1007/s00436-019-06512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Aminopeptidase N is an important metalloenzyme from the M1 zinc metallopeptidase family, which is present in numerous apicomplexan parasites, including Plasmodium, Eimeria, and Cryptosporidium. Aminopeptidase N is a potential drug target, and hence, its properties have been widely investigated. In the current study, the cellular localization and enzyme characteristics of Toxoplasma gondii aminopeptidase N3 (TgAPN3) were evaluated in vitro. Cellular localization analysis revealed that TgAPN3 and GRA protein were co-located in the organelle and parasitophorous vacuole of T. gondii. The secretion assay showed that TgAPN3 could be co-secreted from the tachyzoites with GRA protein. A functional recombinant Toxoplasma aminopeptidase N3 (rTgAPN3) was produced in Escherichia coli. The enzyme activity was first determined using a fluorogenic H-Ala-MCA substrate. Some activity of rTgAPN3 was observed between pH 3.0 and 8.0, with a peak at pH 7.0. The activity was significantly enhanced in the presence of Co2+ ions. Substrate specificity of rTgAPN3 was then evaluated. The enzyme showed a preference for substrates containing N-terminal Ala residues, followed by Tyr and Cys. The rTgAPN3 activity was significantly inhibited by bestatin and phebestatin. In general, TgAPN3 was a structurally conserved member of the M1 family, although it also displayed unique biochemical characteristics. These results lay the foundation for a functional study of TgAPN3 and constitute its putative identification as a drug target.
Collapse
|
11
|
α-Amino Acids as Synthons in the Ugi-5-Centers-4-Components Reaction: Chemistry and Applications. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the first reports, the Ugi four-component reaction (U-4CR) has been recognized as a keystone transformation enabling the synthesis of peptide mimetics in a single step and with high atom economy. In recent decades, the U-4CR has been a source of inspiration for many chemists fascinated by the possibility of identifying new efficient organic reactions by simply changing one of the components or by coupling in tandem the multicomponent process with a huge variety of organic transformations. Herein we review the synthetic potentialities, the boundaries, and the applications of the U-4CR involving α-amino acids, where the presence of two functional groups—the amino and the carboxylic acids—allowed a 5-center 4-component Ugi-like reaction, a powerful tool to gain access to drug-like multi-functionalized scaffolds.
Collapse
|
12
|
Méndez Y, De Armas G, Pérez I, Rojas T, Valdés-Tresanco ME, Izquierdo M, Alonso Del Rivero M, Álvarez-Ginarte YM, Valiente PA, Soto C, de León L, Vasco AV, Scott WL, Westermann B, González-Bacerio J, Rivera DG. Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics. Eur J Med Chem 2018; 163:481-499. [PMID: 30544037 DOI: 10.1016/j.ejmech.2018.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the development of antimicrobials. Here we describe a solid-phase multicomponent approach which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed in the frame of the Distributed Drug Discovery (D3) program, comprises the implementation of parallel Ugi-azide four-component reactions with resin-bound amino acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics (TPMs) suitable for biological screening. By dose-response studies, three compounds were identified as potent and selective ePepN inhibitors, as little inhibitory effect was exhibited for the porcine ortholog aminopeptidase. The study allowed for the identification of the key structural features required for a high ePepN inhibitory activity. The most potent and selective inhibitor (TPM 11) showed a non-competitive inhibition profile of ePepN. We predicted that both diastereomers of compound TPM 11 bind to a site distinct from that occupied by the substrate. Theoretical models suggested that TPM 11 has an alternative inhibition mechanism that doesn't involve Zn coordination. On the other hand, the activity landscape analysis provided a rationale for our findings. Of note, compound TMP 2 showed in vitro antibacterial activity against Escherichia coli. Furthermore, none of the three identified inhibitors is a potent haemolytic agent, and only two compounds showed moderate cytotoxic activity toward the murine myeloma P3X63Ag cells. These results point to promising compounds for the future development of rationally designed TPMs as antibacterial agents.
Collapse
Affiliation(s)
- Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - German De Armas
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Idalia Pérez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Tamara Rojas
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Yoanna María Álvarez-Ginarte
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba.
| | - Carmen Soto
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Lena de León
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Aldrin V Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - William L Scott
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba.
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany.
| |
Collapse
|