1
|
Guo Z, Duan Y, Sun K, Zheng T, Liu J, Xu S, Xu J. Advances in SHP2 tunnel allosteric inhibitors and bifunctional molecules. Eur J Med Chem 2024; 275:116579. [PMID: 38889611 DOI: 10.1016/j.ejmech.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
SHP2 is a non-receptor tyrosine phosphatase encoded by PTPN11, which performs the functions of regulating cell proliferation, differentiation, apoptosis, and survival through removing tyrosine phosphorylation and modulating various signaling pathways. The overexpression of SHP2 or its mutations is related to developmental diseases and several cancers. Numerous allosteric inhibitors with striking inhibitory potency against SHP2 allosteric pockets have recently been identified, and several SHP2 tunnel allosteric inhibitors have been applied in clinical trials to treat cancers. However, based on clinical results, the efficacy of single-agent treatments has been proven to be suboptimal. Most clinical trials involving SHP2 inhibitors have adopted drug combination strategies. This review briefly discusses the research progress on SHP2 allosteric inhibitors and pathway-dependent drug combination strategies for SHP2 in cancer therapy. In addition, we summarize the current bifunctional molecules of SHP2 and elaborate on the design and structural optimization strategies of these bifunctional molecules in detail, offering further direction for the research on novel SHP2 inhibitors.
Collapse
Affiliation(s)
- Zhichao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yiping Duan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kai Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Tiandong Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
2
|
Rehman AU, Zhao C, Wu Y, Zhu Q, Luo R. Targeting SHP2 Cryptic Allosteric Sites for Effective Cancer Therapy. Int J Mol Sci 2024; 25:6201. [PMID: 38892388 PMCID: PMC11172685 DOI: 10.3390/ijms25116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
SHP2, a pivotal component downstream of both receptor and non-receptor tyrosine kinases, has been underscored in the progression of various human cancers and neurodevelopmental disorders. Allosteric inhibitors have been proposed to regulate its autoinhibition. However, oncogenic mutations, such as E76K, convert SHP2 into its open state, wherein the catalytic cleft becomes fully exposed to its ligands. This study elucidates the dynamic properties of SHP2 structures across different states, with a focus on the effects of oncogenic mutation on two known binding sites of allosteric inhibitors. Through extensive modeling and simulations, we further identified an alternative allosteric binding pocket in solution structures. Additional analysis provides insights into the dynamics and stability of the potential site. In addition, multi-tier screening was deployed to identify potential binders targeting the potential site. Our efforts to identify a new allosteric site contribute to community-wide initiatives developing therapies using multiple allosteric inhibitors to target distinct pockets on SHP2, in the hope of potentially inhibiting or slowing tumor growth associated with SHP2.
Collapse
Affiliation(s)
| | | | | | | | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, CA 92697, USA; (A.U.R.)
| |
Collapse
|
3
|
Yuan Z, Zhang M, Chang L, Chen X, Ruan S, Shi S, Zhang Y, Zhu L, Li H, Li S. Discovery of a novel SHP2 allosteric inhibitor using virtual screening, FMO calculation, and molecular dynamic simulation. J Mol Model 2024; 30:131. [PMID: 38613643 DOI: 10.1007/s00894-024-05935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
CONTEXT SHP2 is a non-receptor protein tyrosine phosphatase to remove tyrosine phosphorylation. Functionally, SHP2 is an essential bridge to connect numerous oncogenic cell-signaling cascades including RAS-ERK, PI3K-AKT, JAK-STAT, and PD-1/PD-L1 pathways. This study aims to discover novel and potent SHP2 inhibitors using a hierarchical structure-based virtual screening strategy that combines molecular docking and the fragment molecular orbital method (FMO) for calculating binding affinity (referred to as the Dock-FMO protocol). For the SHP2 target, the FMO method prediction has a high correlation between the binding affinity of the protein-ligand interaction and experimental values (R2 = 0.55), demonstrating a significant advantage over the MM/PBSA (R2 = 0.02) and MM/GBSA (R2 = 0.15) methods. Therefore, we employed Dock-FMO virtual screening of ChemDiv database of ∼2,990,000 compounds to identify a novel SHP2 allosteric inhibitor bearing hydroxyimino acetamide scaffold. Experimental validation demonstrated that the new compound (E)-2-(hydroxyimino)-2-phenyl-N-(piperidin-4-ylmethyl)acetamide (7188-0011) effectively inhibited SHP2 in a dose-dependent manner. Molecular dynamics (MD) simulation analysis revealed the binding stability of compound 7188-0011 and the SHP2 protein, along with the key interacting residues in the allosteric binding site. Overall, our work has identified a novel and promising allosteric inhibitor that targets SHP2, providing a new starting point for further optimization to develop more potent inhibitors. METHODS All the molecular docking studies were employed to identify potential leads with Maestro v10.1. The protein-ligand binding affinities of potential leads were further predicted by FMO calculations at MP2/6-31G* level using GAMESS v2020 system. MD simulations were carried out with AmberTools18 by applying the FF14SB force field. MD trajectories were analyzed using VMD v1.9.3. MM/GB(PB)SA binding free energy analysis was carried out with the mmpbsa.py tool of AmberTools18. The docking and MD simulation results were visualized through PyMOL v2.5.0.
Collapse
Affiliation(s)
- Zhen Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Longfeng Chang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Xingyu Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shanshan Ruan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shanshan Shi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Yiqing Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
4
|
Day JEH, Berdini V, Castro J, Chessari G, Davies TG, Day PJ, St Denis JD, Fujiwara H, Fukaya S, Hamlett CCF, Hearn K, Hiscock SD, Holvey RS, Ito S, Kandola N, Kodama Y, Liebeschuetz JW, Martins V, Matsuo K, Mortenson PN, Muench S, Nakatsuru Y, Ochiiwa H, Palmer N, Peakman T, Price A, Reader M, Rees DC, Rich SJ, Shah A, Shibata Y, Smyth T, Twigg DG, Wallis NG, Williams G, Wilsher NE, Woodhead A, Shimamura T, Johnson CN. Fragment-Based Discovery of Allosteric Inhibitors of SH2 Domain-Containing Protein Tyrosine Phosphatase-2 (SHP2). J Med Chem 2024; 67:4655-4675. [PMID: 38462716 DOI: 10.1021/acs.jmedchem.3c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signaling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signaling and inhibit the proliferation of RTK-driven cancer cell lines. Here, we describe the first reported fragment-to-lead campaign against SHP2, where X-ray crystallography and biophysical techniques were used to identify fragments binding to multiple sites on SHP2. Structure-guided optimization, including several computational methods, led to the discovery of two structurally distinct series of SHP2 inhibitors binding to the previously reported allosteric tunnel binding site (Tunnel Site). One of these series was advanced to a low-nanomolar lead that inhibited tumor growth when dosed orally to mice bearing HCC827 xenografts. Furthermore, a third series of SHP2 inhibitors was discovered binding to a previously unreported site, lying at the interface of the C-terminal SH2 and catalytic domains.
Collapse
Affiliation(s)
- James E H Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Valerio Berdini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Thomas G Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Philip J Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Hideto Fujiwara
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Satoshi Fukaya
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | - Keisha Hearn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Steven D Hiscock
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Satoru Ito
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Navrohit Kandola
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yasuo Kodama
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Kenichi Matsuo
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Sandra Muench
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yoko Nakatsuru
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Hiroaki Ochiiwa
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Nicholas Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - David C Rees
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Sharna J Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Alpesh Shah
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yoshihiro Shibata
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Tomoko Smyth
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - David G Twigg
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Glyn Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Tadashi Shimamura
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
5
|
Yang W, Luo D, Li G, Hu W, Zheng J, Chen L. Mild and efficient synthesis of benzothiazolopyrimidine derivatives via CuAAC/ring cleavage/cyclization reaction. RSC Adv 2023; 13:22966-22972. [PMID: 37520094 PMCID: PMC10377972 DOI: 10.1039/d3ra04082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
An operationally mild and efficient synthesis of benzothiazolopyrimidine is achieved by a three-component reaction of 2-aminebenzo[d]thiazoles, sulfonyl azides and terminal ynones. This cascade process involved a CuAAC/ring cleavage/cyclization reaction. Particularly, most of the benzothiazolopyrimidine derivatives could be isolated by filtration without further purification.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- GuangDong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Weigao Hu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Jia Zheng
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| |
Collapse
|
6
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
7
|
Hayashi T, Hatakeyama M. Exploring Allosteric Inhibitors of Protein Tyrosine Phosphatases Through High-Throughput Screening. Methods Mol Biol 2023; 2691:235-245. [PMID: 37355550 DOI: 10.1007/978-1-0716-3331-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
High-throughput screening (HTS) using a natural or synthetic chemical or natural product library is a powerful technique for discovering novel small-molecular-weight compounds in order to develop drugs that specifically inhibit or activate molecular targets, malfunctioning of which underlies the development of diseases, especially malignant neoplasms. In contrast to a large number of successful cases in obtaining inhibitors against protein tyrosine kinases (PTKs) using HTS, however, the development of selective inhibitors for protein tyrosine phosphatases (PTPs) has lagged since PTP family members share highly conserved catalytic domain structures. Here, in this chapter we describe a novel method for exploring seed compounds of allosteric PTP inhibitors from a chemical/natural product library through HTS.
Collapse
Affiliation(s)
- Takeru Hayashi
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masanori Hatakeyama
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan.
- Center of Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Chen Y, Yao C, Zhang K. Catalyst‐free Synthesis of Benzothiazolopyrimidines
via
Visible‐Light‐Induced Wolff Rearrangement/[4+2] Cycloaddition Process. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiao‐Mei Wang
- School of Materials and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P. R China
| | - Yang‐Xu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Chang‐Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| |
Collapse
|
10
|
Song Y, Yang X, Wang S, Zhao M, Yu B. Crystallographic landscape of SHP2 provides molecular insights for SHP2 targeted drug discovery. Med Res Rev 2022; 42:1781-1821. [DOI: 10.1002/med.21890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| | - Xinyu Yang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Shu Wang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Min Zhao
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Bin Yu
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| |
Collapse
|
11
|
Zhang N, Yu X, Zhang Y. Recent Advances of Thiamine in Organic Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin 132022 People's Republic of China
- College of Chemistry Jilin University Changchun 130012 People's Republic of China
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin 132022 People's Republic of China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin 132022 People's Republic of China
| |
Collapse
|
12
|
Ma W, Montinho‐Inacio E, Iorga BI, Retailleau P, Moreau X, Neuville L, Masson G. Chiral Phosphoric Acid‐Catalyzed Enantioselective Formal [4+2] Cycloaddition Between Dienecarbamates and 2‐Benzothioazolimines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei‐Yang Ma
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Emeric Montinho‐Inacio
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Xavier Moreau
- Institut Lavoisier de Versailles (ILV) UMR CNRS 8180 Université Versailles-St-Quentin-en-Yvelines, Université Paris-Saclay 45 avenue des États-Unis, Bâtiment Lavoisier 78035 Versailles Cedex France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Labcom HITCAT joint lab CNRS-SEQENS ZI de Limay 2 8 rue de Rouen 78440 Porcheville France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Labcom HITCAT joint lab CNRS-SEQENS ZI de Limay 2 8 rue de Rouen 78440 Porcheville France
| |
Collapse
|
13
|
Chen X, Shu C, Li W, Hou Q, Luo G, Yang K, Wu X. Discovery of a Novel Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2) and Cyclin-Dependent Kinase 4 (CDK4) Dual Inhibitor for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2022; 65:6729-6747. [PMID: 35447031 DOI: 10.1021/acs.jmedchem.2c00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The treatment of triple-negative breast cancer (TNBC) remains a huge clinical challenge and dual-targeted small-molecule drugs might provide new therapeutic options for this type of breast cancer. In this work, we discovered a series of SHP2 and CDK4 dual inhibitors through a fused pharmacophore strategy and structural optimization. Notably, lead compound 10 with excellent SHP2 (IC50 = 4.3 nM) and CDK4 (IC50 = 18.2 nM) inhibitory activities effectively induced G0/G1 arrest to prevent the proliferation of TNBC cell lines. Furthermore, compound 10 showed great in vivo pharmacokinetic properties (F = 45.8%) and exerted significant antitumor efficacy in the EMT6 syngeneic mouse model. Western blotting and immunohistochemical analysis confirmed that 10 effectively targeted on both SHP2 and CDK4 and activated the immune response in tumors. These results indicate that lead compound 10, as the first SHP2 and CDK4 dual inhibitor, merits further development for treating TNBC.
Collapse
Affiliation(s)
- Xiaoyu Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chengxia Shu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenqiang Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guangmei Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Tang K, Zhao M, Wu YH, Wu Q, Wang S, Dong Y, Yu B, Song Y, Liu HM. Structure-based design, synthesis and biological evaluation of aminopyrazines as highly potent, selective, and cellularly active allosteric SHP2 inhibitors. Eur J Med Chem 2022; 230:114106. [PMID: 35063735 DOI: 10.1016/j.ejmech.2022.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by the proto-oncogene PTPN11 is the first identified non-receptor protein tyrosine phosphatase. SHP2 dysregulation contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer therapy. In this article, we report the structure-guided design based on the well-characterized SHP2 inhibitor SHP099, extensive structure-activity relationship studies (SARs) of aminopyrazines, biochemical characterization and cellular potency. These medicinal chemistry efforts lead to the discovery of the lead compound TK-453, which potently inhibits SHP2 (SHP2WT IC50 = 0.023 μM, ΔTm = 7.01 °C) in a reversible and noncompetitive manner. TK-453 exhibits high selectivity over SHP2PTP, SHP1 and PTP1B, and may bind at the "tunnel" allosteric site of SHP2 as SHP099. As the key pharmacophore, the aminopyrazine scaffold not only reorganizes the cationic-π stacking interaction with R111 via the novel hydrogen bond interaction between the S atom of thioether linker and T219, but also mediates a hydrogen bond with E250. In vitro studies indicate that TK-453 inhibits proliferation of HeLa, KYSE-70 and THP-1 cells moderately and induces apoptosis of Hela cells. Further mechanistic studies suggest that TK-453 can decrease the phosphorylation levels of AKT and Erk1/2 in HeLa and KYSE-70 cells. Collectively, TK-453 is a highly potent, selective, and cellularly active allosteric SHP2 inhibitor that modulates the phosphorylation of SHP2-mediated AKT and Erk cell signaling pathways by inhibiting the phosphatase activity of SHP2.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiong Wu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Ma Y, Li WY, Sun T, Zhang L, Lu XH, Yang B, Wang RL. Structure-based discovery of a specific SHP2 inhibitor with enhanced blood-brain barrier penetration from PubChem database. Bioorg Chem 2022; 121:105648. [PMID: 35180489 DOI: 10.1016/j.bioorg.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
Abstract
The thiophene [2,3-d]pyrimidine structure-like small molecules were discovered from structure-based virtual screening of 1 billion compounds. Base on enzyme activity assay results, a SHP2-specific molecule inhibitor Comp#2 with IC50 of 1.174 μM, 85-fold more selective for SHP2 than the highly related SHP1 (IC50 > 100 μM). The compound can effectively inhibit SHP2-mediated cell signaling and cancer cell proliferation, including cervix cancer, human pancreatic cancer, large cell lung cancer, and mouse glioma cell. Moreover, the in vivo assay indicated that Comp#2 could inhibit cervix cancer tumors growth in BABL/c mice. This work has shown the specific SHP2 inhibitor can inhibit glioblastoma growth in vivo.
Collapse
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Wei-Ya Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ting Sun
- Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Ling Zhang
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015, China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| |
Collapse
|
16
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Czako B, Sun Y, McAfoos T, Cross JB, Leonard PG, Burke JP, Carroll CL, Feng N, Harris AL, Jiang Y, Kang Z, Kovacs JJ, Mandal P, Meyers BA, Mseeh F, Parker CA, Yu SS, Williams CC, Wu Q, Di Francesco ME, Draetta G, Heffernan T, Marszalek JR, Kohl NE, Jones P. Discovery of 6-[(3 S,4 S)-4-Amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a Potent and Orally Bioavailable SHP2 Inhibitor. J Med Chem 2021; 64:15141-15169. [PMID: 34643390 DOI: 10.1021/acs.jmedchem.1c01132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) plays a role in receptor tyrosine kinase (RTK), neurofibromin-1 (NF-1), and Kirsten rat sarcoma virus (KRAS) mutant-driven cancers, as well as in RTK-mediated resistance, making the identification of small-molecule therapeutics that interfere with its function of high interest. Our quest to identify potent, orally bioavailable, and safe SHP2 inhibitors led to the discovery of a promising series of pyrazolopyrimidinones that displayed excellent potency but had a suboptimal in vivo pharmacokinetic (PK) profile. Hypothesis-driven scaffold optimization led us to a series of pyrazolopyrazines with excellent PK properties across species but a narrow human Ether-à-go-go-Related Gene (hERG) window. Subsequent optimization of properties led to the discovery of the pyrimidinone series, in which multiple members possessed excellent potency, optimal in vivo PK across species, and no off-target activities including no hERG liability up to 100 μM. Importantly, compound 30 (IACS-15414) potently suppressed the mitogen-activated protein kinase (MAPK) pathway signaling and tumor growth in RTK-activated and KRASmut xenograft models in vivo.
Collapse
Affiliation(s)
- Barbara Czako
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Yuting Sun
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Timothy McAfoos
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jason B Cross
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Paul G Leonard
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jason P Burke
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Christopher L Carroll
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Ningping Feng
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Angela L Harris
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Yongying Jiang
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Zhijun Kang
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jeffrey J Kovacs
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Pijus Mandal
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Brooke A Meyers
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Faika Mseeh
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Connor A Parker
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Simon S Yu
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Christopher C Williams
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Qi Wu
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Maria Emilia Di Francesco
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Timothy Heffernan
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Joseph R Marszalek
- TRACTION (Translational Research to AdvanCe Therapeutics and Innovation in Oncology) University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Nancy E Kohl
- Navire Inc., 421 Kipling Street, Palo Alto, California 94301, United States
| | - Philip Jones
- IACS (Institute for Applied Cancer Science), University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
18
|
Fedele C, Li S, Teng KW, Foster CJR, Peng D, Ran H, Mita P, Geer MJ, Hattori T, Koide A, Wang Y, Tang KH, Leinwand J, Wang W, Diskin B, Deng J, Chen T, Dolgalev I, Ozerdem U, Miller G, Koide S, Wong KK, Neel BG. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J Exp Med 2021; 218:211451. [PMID: 33045063 PMCID: PMC7549316 DOI: 10.1084/jem.20201414] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
KRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy. The SHP2-I abrogated RTK feedback signaling and adaptive resistance to G12C-Is in vitro, in xenografts, and in syngeneic KRASG12C-mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). SHP2-I/G12C-I combination evoked favorable but tumor site-specific changes in the immune microenvironment, decreasing myeloid suppressor cells, increasing CD8+ T cells, and sensitizing tumors to PD-1 blockade. Experiments using cells expressing inhibitor-resistant SHP2 showed that SHP2 inhibition in PDAC cells is required for PDAC regression and remodeling of the immune microenvironment but revealed direct inhibitory effects on tumor angiogenesis and vascularity. Our results demonstrate that SHP2-I/G12C-I combinations confer a substantial survival benefit in PDAC and NSCLC and identify additional potential combination strategies.
Collapse
Affiliation(s)
- Carmine Fedele
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Kai Wen Teng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Connor J R Foster
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - David Peng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Mitchell J Geer
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY.,Department of Medicine, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Yubao Wang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Joshua Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Jiehui Deng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
19
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|
20
|
Wu J, Zhang H, Zhao G, Wang R. Allosteric Inhibitors of SHP2: An Updated Patent Review (2015-2020). Curr Med Chem 2021; 28:3825-3842. [PMID: 32988341 DOI: 10.2174/1568011817666200928114851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Srchomology-2-domain-containing PTP 2 (SHP2) is a nonreceptor phosphatase encoded by the PTPN11 gene. Over expression of SHP2 is associated with various human diseases, such as Noonan syndrome, LEOPARD syndrome, and cancers. To overcome the shortcomings of existing orthosteric inhibitors, novel inhibitors targeting the allosteric site of SHP2 with high selectivity and low toxicity are under development. This paper reviews allosteric inhibitors of SHP2 published in patents from 2015 to 2020. The molecules are classified according to the chemical structure of the central core. SHP2 has long been considered as an 'undruggable' protein. Fortunately, a critical breakthrough was made by researchers from Novartis AG Ltd., who identified SHP099 as a highly potent, selective, soluble, and orally bioavailable SHP2 allosteric inhibitor. Currently, there are several allosteric inhibitors of SHP2 in clinical development. However, drug resistance is still a major challenge. The combination of SHP2 allosteric inhibitors and immunotherapy drugs or molecular targeted drugs is emerging as a promising therapeutic strategy against drug resistance.
Collapse
Affiliation(s)
- Jingwei Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Huan Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guilong Zhao
- The Institute of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Runling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
21
|
Guo Y, Xu Y, Dong X, Zhang J. Cross the Undruggable Barrier, the Development of SHP2 Inhibitors: From Catalytic Site Inhibitors to Allosteric Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Jianjun Zhang
- Department of Pharmacy Institution The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Hangzhou 310006 P.R. China
| |
Collapse
|
22
|
Danehchin M, Esmaeili AA. Biomimetic hydrogenation of electron deficient olefins using in situ generated 2-arylbenzimidazoline: synthesis of novel 3-benzylbenzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones. Mol Divers 2021; 26:1191-1199. [PMID: 34117585 DOI: 10.1007/s11030-021-10246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
In the present study, 2-Arylbenzimidazoline generated in situ from reaction of aromatic aldehydes and o-phenylenediamine used as biomimetic reductive agents for reductive alkylation of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one for synthesis of novel 3-benzyl-2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones is described. The main benefits of this protocol include simplicity, reaction mildness, high yield, easy work up, and simple purification. The molecular structures were characterized by IR spectrophotometry, mass spectrometry, NMR spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Maryam Danehchin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| |
Collapse
|
23
|
Zhang Y, Yang JH, Xia YQ, Dong L, Chen FE. Diastereo- and Enantioselective Mannich/Cyclization Cascade Reaction Access to Chiral Benzothiazolopyrimidine Derivatives. Chemistry 2021; 27:6183-6186. [PMID: 33751688 DOI: 10.1002/chem.202005509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Indexed: 01/03/2023]
Abstract
An efficient asymmetric Mannich/cyclization cascade strategy was established from 2-benzothiazolimines with N-acylpyrazoles to provide optical active benzothiazolopyrimidine derivatives using a copper-based complex. The mild cascade process constructed various structurally diverse products with broad scope of substrates together with excellent enantioselectivities (up to 99 % ee) and diastereoselectivities (up to 99:1 d.r.).
Collapse
Affiliation(s)
- Yan Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jia-Hui Yang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ying-Qi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lin Dong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.,Shanghai Engineering Center of, Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, P. R. China
| |
Collapse
|
24
|
Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. J Biol Chem 2021; 296:100538. [PMID: 33722610 PMCID: PMC8054191 DOI: 10.1016/j.jbc.2021.100538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/14/2022] Open
Abstract
The protein tyrosine phosphatase SHP2 mediates multiple signal transductions in various cellular pathways, controlled by a variety of upstream inputs. SHP2 dysregulation is causative of different types of cancers and developmental disorders, making it a promising drug target. However, how SHP2 is modulated by its different regulators remains largely unknown. Here, we use single-molecule fluorescence resonance energy transfer and molecular dynamics simulations to investigate this question. We identify a partially open, semiactive conformation of SHP2 that is intermediate between the known open and closed states. We further demonstrate a “multiple gear” regulatory mechanism, in which different activators (e.g., insulin receptor substrate-1 and CagA), oncogenic mutations (e.g., E76A), and allosteric inhibitors (e.g., SHP099) can shift the equilibrium of the three conformational states and regulate SHP2 activity to different levels. Our work reveals the essential role of the intermediate state in fine-tuning the activity of SHP2, which may provide new opportunities for drug development for relevant cancers.
Collapse
Affiliation(s)
- Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Qinglu Zhong
- University of the Chinese Academy of Sciences, Beijing, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingjing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Jiawei Zhao
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoou Sun
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lu
- University of the Chinese Academy of Sciences, Beijing, China; Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Li
- University of the Chinese Academy of Sciences, Beijing, China; Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guohui Li
- University of the Chinese Academy of Sciences, Beijing, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Zheng M, Liu Y, Wu C, Yang K, Wang Q, Zhou Y, Chen L, Li H. Novel PROTACs for degradation of SHP2 protein. Bioorg Chem 2021; 110:104788. [PMID: 33706076 DOI: 10.1016/j.bioorg.2021.104788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatase SHP2 is a member of PTPs family associated with cancer such as leukemia, non-small cell lung cancer, breast cancer, and so on. SHP2 is a promising target for drug development, and consequently it is of great significance to develop SHP2 inhibitors. Herein, we report CRBN-recruiting PROTAC molecules targeting SHP2 by connecting pomalidomide with SHP099, an allosteric inhibitor of SHP2. Among them, SP4 significantly inhibited the growth of Hela cells, compared with SHP099, its activity increased 100 times. In addition, it can significantly induce SHP2 degradation and cell apoptosis. Further study of SHP2-protac may have important significance for the treatment of SHP2 related diseases.
Collapse
Affiliation(s)
- Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Canrong Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kaiyin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiqi Wang
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lixia Chen
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
26
|
Chen XP, Hou KQ, Zhou F, Chan ASC, Xiong XF. Organocatalytic Asymmetric Synthesis of Benzothiazolopyrimidines via [4 + 2] Cyclization of 2-Benzothiazolimines and Aldehydes. J Org Chem 2021; 86:1667-1675. [DOI: 10.1021/acs.joc.0c02499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xue-Ping Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
27
|
Ke C, Liu Z, Ruan S, Feng X, Liu X. Organocatalytic asymmetric synthesis of benzothiazolopyrimidines via a [4 + 2] cycloaddition of azlactones with 2-benzothiazolimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00948f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A chiral guanidine-catalyzed [4 + 2] cycloaddition of 2-benzothiazolimines with azlactones characterized by a high yield, ee, and dr and a broad substrate scope has been developed. Gram-scale synthesis and derivatization of the product revealed the potential of utility.
Collapse
Affiliation(s)
- Chaoqi Ke
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sai Ruan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 WT and SHP2 F285S by molecular dynamics study. J Mol Graph Model 2020; 103:107807. [PMID: 33338846 DOI: 10.1016/j.jmgm.2020.107807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Abnormal activation of Ras/MAPK signaling pathway could trigger excessive cell division. Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2) could promote Ras/MAPK activation by integrating growth factor signals. Thus, SHP2 inhibitors had become a hot topic in the treatment of cancer. SHP2F285S, mutation in SHP2, was detected in leukemia variants. The compound 2 (3-benzyl-8-chloro-2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one) had been reported that it was a potent allosteric inhibitor of both SHP2 wild type (SHP2WT) and the F285S mutant (SHP2F285S). However, the mechanism of inhibition remained to be further discovered. Herein, molecular docking and molecular dynamic (MD) simulation were performed to explain the inhibition mechanism of compound 2 on SHP2WT and SHP2F285S. Overall, the molecular docking analysis revealed that compound 2 maintained the "close" structure of SHP2 protein probably by locking the C-SH2 and PTP domain. Next, post-analysis demonstrated that compound 2 might make TYR66-GLU76 of D'E-loop in N-SH2 and GLU258-LYS266 of B'C-loop, HIS458-ARG465 of P-loop, VAL497-THR507 of Q-loop in PTP domain regions tightly connect and much easier maintain "self-inhibited" conformation of SHP2F285S-compound2 than that of SHP2WT-compound2. Importantly, GLU76 of D'E-loop could play a vital role in inhibition of SHP2WT-compound2 and SHP2F285S-compound2. This work provided a reliable clue to develop novel inhibitors for leukemia related to SHP2F285S.
Collapse
|
29
|
Mostinski Y, Heynen GJJE, López-Alberca MP, Paul J, Miksche S, Radetzki S, Schaller D, Shanina E, Seyffarth C, Kolomeets Y, Ziebart N, de Schryver J, Oestreich S, Neuenschwander M, Roske Y, Heinemann U, Rademacher C, Volkamer A, von Kries JP, Birchmeier W, Nazaré M. From Pyrazolones to Azaindoles: Evolution of Active-Site SHP2 Inhibitors Based on Scaffold Hopping and Bioisosteric Replacement. J Med Chem 2020; 63:14780-14804. [PMID: 33210922 DOI: 10.1021/acs.jmedchem.0c01265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tyrosine phosphatase SHP2 controls the activity of pivotal signaling pathways, including MAPK, JAK-STAT, and PI3K-Akt. Aberrant SHP2 activity leads to uncontrolled cell proliferation, tumorigenesis, and metastasis. SHP2 signaling was recently linked to drug resistance against cancer medications such as MEK and BRAF inhibitors. In this work, we present the development of a novel class of azaindole SHP2 inhibitors. We applied scaffold hopping and bioisosteric replacement concepts to eliminate unwanted structural motifs and to improve the inhibitor characteristics of the previously reported pyrazolone SHP2 inhibitors. The most potent azaindole 45 inhibits SHP2 with an IC50 = 0.031 μM in an enzymatic assay and with an IC50 = 2.6 μM in human pancreas cells (HPAF-II). Evaluation in a series of cellular assays for metastasis and drug resistance demonstrated efficient SHP2 blockade. Finally, 45 inhibited proliferation of two cancer cell lines that are resistant to cancer drugs and diminished ERK signaling.
Collapse
Affiliation(s)
- Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Maria Pascual López-Alberca
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jerome Paul
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sandra Miksche
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - David Schaller
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena Shanina
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg, 1, 14476 Potsdam, Germany
| | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Yuliya Kolomeets
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Nandor Ziebart
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Judith de Schryver
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sylvia Oestreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Udo Heinemann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christoph Rademacher
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg, 1, 14476 Potsdam, Germany
| | - Andrea Volkamer
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
30
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
31
|
Jayarajan R, Kottha T, Subbaramanian S, Vasuki G. Base Promoted Cascade Reaction: A Convenient Route to Hybrid S and N Polyheterocycles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramasamy Jayarajan
- Department of Chemistry Pondicherry University Puducherry 605014 India
- Presently at Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-106 91 Stockholm Sweden
| | | | - Sabarinathan Subbaramanian
- Department of Chemistry Pondicherry University Puducherry 605014 India
- Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology, Vadapalani Campus, No. 1 Jawaharlal Nehru Road, Vadapalani TN India
| | | |
Collapse
|
32
|
Satheeshkumar R, Zhu R, Feng B, Huang C, Gao Y, Gao LX, Shen C, Hou TJ, Xu L, Li J, Zhu YL, Zhou YB, Wang WL. Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorg Med Chem Lett 2020; 30:127170. [DOI: 10.1016/j.bmcl.2020.127170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/03/2023]
|
33
|
Ni Q, Wang X, Xu F, Chen X, Song X. Organocatalytic asymmetric [4+2] cyclization of 2-benzothiazolimines with azlactones: access to chiral benzothiazolopyrimidine derivatives. Chem Commun (Camb) 2020; 56:3155-3158. [DOI: 10.1039/d0cc00736f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A squaramide catalyzed regiospecific and stereoselective [4+2] cyclization of 2-benzothiazolimines with azlactones has been established.
Collapse
Affiliation(s)
- Qijian Ni
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xuyang Wang
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Fangfang Xu
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Xiaoxiao Song
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| |
Collapse
|
34
|
Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res 2019; 152:104595. [PMID: 31838080 DOI: 10.1016/j.phrs.2019.104595] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a major phosphatase involved in several cellular processes. In recent years, SHP2 has been the focus of significant attention in human diseases, particular in cancer. Several studies have shown that SHP2 plays an important role in regulating immune cell functions in tumor microenvironment. A few clinical trials conducted using SHP2 allosteric inhibitors have shown remarkable anti-tumor benefits and good safety profiles. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in T lymphocytes, macrophages and cancer cells. It also summarizes the current development of SHP2 inhibitors as a promising strategy for cancer immunotherapy.
Collapse
|
35
|
Design, Synthesis, and In Vitro Activity of Pyrazine Compounds. Molecules 2019; 24:molecules24234389. [PMID: 31805633 PMCID: PMC6930559 DOI: 10.3390/molecules24234389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the fact that there are several anticancer drugs available, cancer has evolved using different pathways inside the cell. The protein tyrosine phosphatases pathway is responsible for monitoring cell proliferation, diversity, migration, and metabolism. More specifically, the SHP2 protein, which is a member of the PTPs family, is closely related to cancer. In our efforts, with the aid of a structure-based drug design, we optimized the known inhibitor SHP099 by introducing 1-(methylsulfonyl)-4-prolylpiperazine as a linker. We designed and synthesized three pyrazine-based small molecules. We started with prolines as cyclic amines, confirming that our structures had the same interactions with those already existing in the literature, and, here, we report one new hydrogen bond. These studies concluded in the discovery of methyl (6-amino-5-(2,3-dichlorophenyl)pyrazin-2-yl)prolylprolinate hydrochloride as one of the final compounds which is an active and acceptable cytotoxic agent.
Collapse
|
36
|
Sarver P, Acker M, Bagdanoff JT, Chen Z, Chen YN, Chan H, Firestone B, Fodor M, Fortanet J, Hao H, Hentemann M, Kato M, Koenig R, LaBonte LR, Liu G, Liu S, Liu C, McNeill E, Mohseni M, Sendzik M, Stams T, Spence S, Tamez V, Tichkule R, Towler C, Wang H, Wang P, Williams SL, Yu B, LaMarche MJ. 6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors. J Med Chem 2019; 62:1793-1802. [DOI: 10.1021/acs.jmedchem.8b01726] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Kostrzewa T, Sahu KK, Gorska-Ponikowska M, Tuszynski JA, Kuban-Jankowska A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4139-4147. [PMID: 30584278 PMCID: PMC6287413 DOI: 10.2147/dddt.s186614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background The protein tyrosine phosphatases PTP1B and SHP2 are promising drug targets in treatment design for breast cancer. Searching for specific inhibitors of their activity has recently become the challenge of many studies. Previous work has indicated that the promising PTP inhibitors may be small compounds that are able to bind and interact with amino residues from the binding site. Purpose The main goal of our study was to synthesize and analyze the effect of selected small peptide inhibitors on oncogenic PTP1B and SHP2 enzymatic activity and viability of MCF7 breast cancer cells. We also performed computational analysis of peptides binding with allosteric sites of PTP1B and SHP2 phosphatases. Methods We measured the inhibitory activity of compounds utilizing recombinant enzymes and MCF7 cell line. Computational analysis involved docking studies of binding conformation and interactions of inhibitors with allosteric sites of phosphatases. Results The results showed that the tested compounds decrease the enzymatic activity of phosphatases PTP1B and SHP2 with IC50 values in micromolar ranges. We observed higher inhibitory activity of dipeptides than tripeptides. Phe-Asp was the most effective against SHP2 enzymatic activity, with IC50=5.2±0.4 µM. Micromolar concentrations of tested dipeptides also decreased the viability of MCF7 breast cancer cells, with higher inhibitory activity observed for the Phe-Asp peptide. Moreover, the peptides tested were able to bind and interact with allosteric sites of PTP1B and SHP2 phosphatases. Conclusion Our research showed that small peptide compounds can be considered for the design of specific inhibitors of oncogenic protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland,
| | - Kamlesh K Sahu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
38
|
Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nat Commun 2018; 9:4508. [PMID: 30375388 PMCID: PMC6207684 DOI: 10.1038/s41467-018-06823-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023] Open
Abstract
Activating mutations in PTPN11, encoding the cytosolic protein tyrosine phosphatase SHP2, result in developmental disorders and act as oncogenic drivers in patients with hematologic cancers. The allosteric inhibitor SHP099 stabilizes the wild-type SHP2 enzyme in an autoinhibited conformation that is itself destabilized by oncogenic mutations. Here, we report the impact of the highly activated and most frequently observed mutation, E76K, on the structure of SHP2, and investigate the effect of E76K and other oncogenic mutations on allosteric inhibition by SHP099. SHP2E76K adopts an open conformation but can be restored to the closed, autoinhibited conformation, near-identical to the unoccupied wild-type enzyme, when complexed with SHP099. SHP099 inhibitory activity against oncogenic SHP2 variants in vitro and in cells scales inversely with the activating strength of the mutation, indicating that either oncoselective or vastly more potent inhibitors will be necessary to suppress oncogenic signaling by the most strongly activating SHP2 mutations in cancer. Activating mutations of the non-receptor protein tyrosine phosphatase SHP2 can cause cancer. Here the authors present the crystal structure of SHP2E76K, the most frequent cancer-associated SHP2 mutation, which adopts an open-state structure and show that the allosteric inhibitor SHP099 can revert SHP2E76K to its closed, autoinhibited conformation.
Collapse
|
39
|
Sun YZ, Chen XB, Wang RR, Li WY, Ma Y. Exploring the effect of N308D mutation on protein tyrosine phosphatase-2 cause gain-of-function activity by a molecular dynamics study. J Cell Biochem 2018; 120:5949-5961. [PMID: 30304563 DOI: 10.1002/jcb.27883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.
Collapse
Affiliation(s)
- Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiu-Bo Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.,Eye Hospital, Tianjin Medical University, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Li W, Wei H, Sun Y, Zhou H, Ma Y, Wang R. Exploring the effect of E76K mutation on SHP2 cause gain‐of‐function activity by a molecular dynamics study. J Cell Biochem 2018; 119:9941-9956. [DOI: 10.1002/jcb.27316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Wei‐Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Hui‐Yu Wei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
- Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Tianjin China
| | - Ying‐Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Hui Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| | - Run‐Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) School of Pharmacy, Tianjin Medical University Tianjin China
| |
Collapse
|
41
|
Fodor M, Price E, Wang P, Lu H, Argintaru A, Chen Z, Glick M, Hao HX, Kato M, Koenig R, LaRochelle JR, Liu G, McNeill E, Majumdar D, Nishiguchi GA, Perez LB, Paris G, Quinn CM, Ramsey T, Sendzik M, Shultz MD, Williams SL, Stams T, Blacklow SC, Acker MG, LaMarche MJ. Dual Allosteric Inhibition of SHP2 Phosphatase. ACS Chem Biol 2018; 13:647-656. [PMID: 29304282 DOI: 10.1021/acschembio.7b00980] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.
Collapse
Affiliation(s)
- Michelle Fodor
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Edmund Price
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Ping Wang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Hengyu Lu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Andreea Argintaru
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Zhouliang Chen
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Meir Glick
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Huai-Xiang Hao
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Mitsunori Kato
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Robert Koenig
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jonathan R. LaRochelle
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana−Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Gang Liu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Eric McNeill
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Dyuti Majumdar
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Gisele A. Nishiguchi
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Lawrence B. Perez
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Gregory Paris
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Christopher M. Quinn
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Timothy Ramsey
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Martin Sendzik
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Michael David Shultz
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Sarah L. Williams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Travis Stams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Stephen C. Blacklow
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana−Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Michael G. Acker
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Matthew J. LaMarche
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|