1
|
Xing T, Yu S, Qin M, Zhang M, Ma Y, Xiao Z. Synthesis, anti-inflammatory activity, and conformational relationship studies of chromone derivatives incorporating amide groups. Bioorg Med Chem Lett 2023; 96:129539. [PMID: 37925088 DOI: 10.1016/j.bmcl.2023.129539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Inflammation is the initial biological reaction of the immune system to various stimuli such as infection, injury, or irritation. Extensive research has demonstrated that a growing array of diseases are triggered by inflammatory mechanisms. Currently, anti-inflammatory drugs are widely utilized in clinical practice due to their therapeutic advantages; however, the potential side effects cannot be ignored by us. In our work, a series of amide compounds with chromones as the parent nucleus were designed and synthesized using the principle of colligated drug design. The results of the biological evaluation indicated that four compounds exhibited lower EC50 values compared to the positive drug ibuprofen. Notably, compound 5-9 showed optimal inhibitory activity (EC50 = 5.33 ± 0.57 μM) against the production of nitric oxide (NO) induced by lipopolysaccharide (LPS) in RAW264.7 cells. Structure-activity relationships (SAR) showed that the presence of electron-withdrawing groups at positions 5 and 8, or electron-donating groups at positions 6 and 7 of the parent nucleus of the chromones can enhance the anti-inflammatory activity of the chromones. The molecular docking studies predicted the mode of interaction between the compounds and protein. Additionally, these studies have demonstrated that the amide bond is the key radical to the anti-inflammatory effect. Based on the summary of the aforementioned studies, it can be inferred that compound 5-9 exhibit potential as an anti-inflammatory drug that deserves further investigation.
Collapse
Affiliation(s)
- Tao Xing
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, Inner Mongolia Autonomous Region, China
| | - Shuyan Yu
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, Inner Mongolia Autonomous Region, China.
| | - Meng Qin
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, Inner Mongolia Autonomous Region, China
| | - Mengdi Zhang
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, Inner Mongolia Autonomous Region, China
| | - Yuheng Ma
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, Inner Mongolia Autonomous Region, China.
| | - Zhibin Xiao
- School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
2
|
Gu X, Guan M, Jiang C, Song Q, Li X, Sun N, Chen J, Qiu J. Assessment of Thiosemicarbazone-Containing Compounds as Potential Antileukemia Agents against P-gp Overexpressing Drug Resistant K562/A02 Cells. Chem Biodivers 2020; 18:e2000775. [PMID: 33314614 DOI: 10.1002/cbdv.202000775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022]
Abstract
P-Glycoprotein (P-gp) overexpression is considered to be the leading cause of multidrug resistance (MDR) and failure of chemotherapy for leukemia. In this study, seventeen thiosemicarbazone-containing compounds were prepared and evaluated as potential antileukemia agents against drug resistant K562/A02 cell overexpressing P-gp. Among them, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could significantly inhibit K562/A02 cells proliferation with an IC50 value of 0.96 μM. Interestingly, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could dose-dependently increase ROS levels of drug resistant K562/A02 cells, thus displaying a potential collateral sensitivity (CS)-inducing effect and selectively killing K562/A02 cells. Furthermore, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide possessed potent inhibitory effect on HDAC1 and HDAC6, and could promote K562/A02 cells apoptosis via dose-dependently increasing Bax expression, reducing Bcl-2 protein level, and inducing the cleavage of PARP and caspase3. These present findings suggest that N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide might be a promising lead to discover novel antileukemia agents against P-gp overexpressing leukemic cells.
Collapse
Affiliation(s)
- Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Mingyu Guan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Chunyu Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Qinghua Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Xin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Nan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| |
Collapse
|
3
|
Shi X, Zhao Y, Zhou L, Yin H, Liu J, Ma L. Design, Synthesis and Biological Evaluation of Dimethyl Cardamonin (DMC) Derivatives as P-glycoprotein-mediated Multidrug Resistance Reversal Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200531162015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
P-glycoprotein (P-gp) has been regarded as an important factor in the multidrug
resistance (MDR) of tumor cells within the last decade, which can be solved by inhibiting Pgp
to reverse MDR. Thus, it is an effective strategy to develop inhibitor of P-gp.
Objective:
In this study, the synthesis of a series of derivatives had been carried out by bioisosterism
design on the basis of Dimethyl Cardamonin (DMC). Subsequently, we evaluated their reversal activities
as potential P-glycoprotein (P-gp)-mediated Multidrug Resistance (MDR) agents.
Methods:
Dimethyl cardamonin derivatives were synthesized from acetophenones and the corresponding
benzaldehydes in the presence of 40% KOH by Claisen-Schmidt reaction. Their cytotoxicity
and reversal activities in vitro were assessed with MTT. Moreover, the compound B4 was evaluated
by Doxorubicin (DOX) accumulation, Western blot and wound-healing assays deeply.
Results and Conclusion:
The results showed that compounds B2, B4 and B6 had the potency of
MDR reversers with little intrinsic cytotoxicity. Meanwhile, these compounds also demonstrated the
capability to inhibit MCF-7 and MCF-7/DOX cells migration. Besides, the most compound B4 was
selected for further study, which promoted the accumulation of DOX in MCF-7/DOX cells and inhibited
the expressionof P-gp at protein levels.
Conclusion:
The above findings may provide new insights for the research and development of Pgp-
mediated MDR reversal agents.
Collapse
Affiliation(s)
- Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuyu Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Licheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
M. F. Gonçalves B, S. P. Cardoso D, U. Ferreira MJ. Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators. Molecules 2020; 25:E3364. [PMID: 32722234 PMCID: PMC7435859 DOI: 10.3390/molecules25153364] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the main limitations for chemotherapy success. Numerous mechanisms are behind the MDR phenomenon wherein the overexpression of the ATP-binding cassette (ABC) transporter proteins P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 1 (MRP1) is highlighted as a prime factor. Natural product-derived compounds are being addressed as promising ABC transporter modulators to tackle MDR. Flavonoids and terpenoids have been extensively explored in this field as mono or dual modulators of these efflux pumps. Nitrogen-bearing moieties on these scaffolds were proved to influence the modulation of ABC transporters efflux function. This review highlights the potential of semisynthetic nitrogen-containing flavonoid and terpenoid derivatives as candidates for the design of effective MDR reversers. A brief introduction concerning the major role of efflux pumps in multidrug resistance, the potential of natural product-derived compounds in MDR reversal, namely natural flavonoid and terpenoids, and the effect of the introduction of nitrogen-containing groups are provided. The main modifications that have been performed during last few years to generate flavonoid and terpenoid derivatives, bearing nitrogen moieties, such as aliphatic, aromatic and heterocycle amine, amide, and related functional groups, as well as their P-gp, MRP1 and BCRP inhibitory activities are reviewed and discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/metabolism
- Drug Resistance, Multiple/drug effects
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Nitrogen/chemistry
- Terpenes/chemistry
- Terpenes/pharmacology
Collapse
Affiliation(s)
| | | | - Maria-José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (B.M.F.G.); (D.S.P.C.)
| |
Collapse
|
5
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Feng Z, Chen Q. Raised CD40L expression attenuates drug resistance in Adriamycin-resistant THP-1 cells. Exp Ther Med 2020; 19:2188-2194. [PMID: 32104283 PMCID: PMC7027340 DOI: 10.3892/etm.2020.8452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia is a common hematological malignancy that often exhibits strong drug resistance when treated using conventional chemotherapy. Although numerous studies have been carried out to develop methods of overcoming drug resistance, the results have generally been unsatisfactory. CD40 ligand (CD40L) has been shown to improve the sensitivity of cancer cells to drug treatment. In the present study, Adriamycin (ADM)-resistant human monocytic THP-1 cells (THP-1/A cells) were developed by incubating THP-1 cells with increasing concentrations of ADM. Cells were transfected with CD40L vectors to explore the potential involvement of CD40L in regulating multidrug resistance (MDR) in cancer. Cell proliferation and viability were measured using the Cell Counting Kit-8 assay; cell apoptosis was evaluated by flow cytometry, trypan blue staining and caspase-3 activity; and the expression of MDR-associated protein 1 (MRP1) and permeability glycoprotein (P-gp) was analyzed using western blotting. The results revealed that the protein expression levels of MRP1 and P-gp were downregulated by raised CD40L expression and that the combination of raised CD40L expression with daunorubicin (DNR), a drug from which ADM is derived, significantly increased the extent of cell apoptosis, indicating that drug resistance was effectively attenuated by CD40L. Collectively, these results suggested that CD40L may contribute towards reducing DNR resistance in THP-1/A cells.
Collapse
Affiliation(s)
- Zhongxin Feng
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qi Chen
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
7
|
Design, synthesis and biological evaluation of stereo- and regioisomers of amino aryl esters as multidrug resistance (MDR) reversers. Eur J Med Chem 2019; 182:111655. [DOI: 10.1016/j.ejmech.2019.111655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022]
|
8
|
Annes SB, Vigneshwar K, Nivedha K, Manojveer S, Ramesh S. Deep Eutectic Solvent Mediated Alkyne‐Carbonyl Metathesis (ACM) Reaction for the Synthesis of
2H
‐Chromene Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201901350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sesuraj Babiola Annes
- Department of ChemistrySchool of Chemical and BiotechnologySASTRA Deemed University, Thanjavur, Tamil Nadu India
| | - Kulandaiappan Vigneshwar
- Department of ChemistrySchool of Chemical and BiotechnologySASTRA Deemed University, Thanjavur, Tamil Nadu India
| | - Kolanchinathan Nivedha
- Department of ChemistrySchool of Chemical and BiotechnologySASTRA Deemed University, Thanjavur, Tamil Nadu India
| | - Seetharaman Manojveer
- Centre for Analysis and SynthesisDepartment of ChemistryLund University, P.O. Box 124 22100 Lund Sweden
| | - Subburethinam Ramesh
- Department of ChemistrySchool of Chemical and BiotechnologySASTRA Deemed University, Thanjavur, Tamil Nadu India
| |
Collapse
|
9
|
Liu Z, Hao W, Liu Z, Gao W, Zhang Z, Zhang Y, Li X, Tong L, Tang B. Bimetal‐Catalyzed Cascade Reaction for Efficient Synthesis of
N
‐Isopropenyl 1,2,3‐Triazoles via In‐Situ Generated 2‐Azidopropenes. Chem Asian J 2019; 14:2149-2154. [DOI: 10.1002/asia.201900402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Wenjing Hao
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Zhixian Liu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Zhihai Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Yanan Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Xiang Li
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
10
|
Gao Y, Shi W, Cui J, Liu C, Bi X, Li Z, Huang W, Wang G, Qian H. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg Med Chem 2018; 26:2420-2427. [DOI: 10.1016/j.bmc.2018.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/27/2018] [Accepted: 03/31/2018] [Indexed: 01/18/2023]
|