1
|
Pang M, Ramazani A, Zhang Z, Zhang G. Reagent-assisted regio-divergent cyclization synthesis of pyrazole. Org Biomol Chem 2025; 23:2812-2817. [PMID: 39989324 DOI: 10.1039/d5ob00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The present study reveals a practical one-pot base-promoted regio-divergent cyclization of hydrazines with alkynyl silane under mild conditions, facilitating the synthesis of diverse silicone-substituted pyrazoles and functionalized pyrazoles in great yields with exceptional selectivity. This protocol is expected to afford a streamlined one-pot approach for the synthesis of multiple compounds in water.
Collapse
Affiliation(s)
- Mengdi Pang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China.
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, lran
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China
- Department of Materials Science and Engineering, Shanxi Institute of Technology, Yangquan 045000, P. R. China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China.
| |
Collapse
|
2
|
Xu Y, Wagner GK. A cell-permeable probe for the labelling of a bacterial glycosyltransferase and virulence factor. RSC Chem Biol 2024; 5:55-62. [PMID: 38179196 PMCID: PMC10763556 DOI: 10.1039/d3cb00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
Chemical probes for bacterial glycosyltransferases are of interest for applications such as tracking of expression levels, and strain profiling and identification. Existing probes for glycosyltransferases are typically based on sugar-nucleotides, whose charged nature limits their applicability in intact cells. We report the development of an uncharged covalent probe for the bacterial galactosyltransferase LgtC, and its application for the fluorescent labelling of this enzyme in recombinant form, cell lysates, and intact cells. The probe was designed by equipping a previously reported covalent LgtC inhibitor based on a pyrazol-3-one scaffold with a 7-hydroxycoumarin fluorophore. We show that this pyrazol-3-ones scaffold is surprisingly stable in aqueous media, which may have wider implications for the use of pyrazol-3-ones as chemical probes. We also show that the 7-hydroxycoumarin fluorophore leads to an unexpected improvement in activity, which could be exploited for the development of second generation analogues. These results will provide a basis for the development of LgtC-specific probes for the detection of LgtC-expressing bacterial strains.
Collapse
Affiliation(s)
- Yong Xu
- Department of Chemistry, King's College London UK
| | - Gerd K Wagner
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road Belfast BT9 7BL UK
| |
Collapse
|
3
|
Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R. Pyrazolones as inhibitors of immune checkpoint blocking the PD-1/PD-L1 interaction. Eur J Med Chem 2022; 236:114343. [DOI: 10.1016/j.ejmech.2022.114343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023]
|
4
|
|
5
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
6
|
Yang K, Li Z, Sheng Y, Deng J, Song Y, Liu Z, Jia A. Construction of CF
3
‐containing Oxepino[2,3‐
c
]pyrazole Motif via Sulfur Ylide‐mediated Annulation or Me
2
S involved One‐pot Reaction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaichuan Yang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610106 P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Zhi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Yiqun Sheng
- Jinhua Branch Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610106 P. R. China
| | - Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Yanxia Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Zhenxiang Liu
- College of Pharmacy Jinhua Polytechnic Jinhua 321007 P. R. China
| | - Aiqiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| |
Collapse
|
7
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
McAulay K, Hoyt EA, Thomas M, Schimpl M, Bodnarchuk MS, Lewis HJ, Barratt D, Bhavsar D, Robinson DM, Deery MJ, Ogg DJ, Bernardes GJL, Ward RA, Waring MJ, Kettle JG. Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. J Am Chem Soc 2020; 142:10358-10372. [PMID: 32412754 DOI: 10.1021/jacs.9b13391] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With a resurgence in interest in covalent drugs, there is a need to identify new moieties capable of cysteine bond formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, the use of a novel heterocycle as a cysteine reactive warhead is employed to target Cys788 in c-KIT, where acrylamide has previously failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for cysteine covalent modification while avoiding some of the limitations generally associated with established moieties.
Collapse
Affiliation(s)
| | - Emily A Hoyt
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | | - Marianne Schimpl
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Derek Barratt
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Deepa Bhavsar
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Derek J Ogg
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.,Instituto de Medicina Molecular, Faculdade de Medicina de Universidad de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Michael J Waring
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K
| | | |
Collapse
|
9
|
Métier CC, Wagner GK. Novel disaccharide inhibitors for the bacterial galactosyltransferase LgtC: Design, synthesis via Heyns rearrangement, and biochemical evaluation. Carbohydr Res 2020; 492:108017. [PMID: 32402851 DOI: 10.1016/j.carres.2020.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Bacterial glycosyltransferases are potential targets for the development of novel antibiotics and anti-virulence agents. We report a novel inhibitor design for the retaining α-1,4-galactosyltransferase LgtC from Neisseria meningitidis. Our design is based on the installation of an electrophilic warhead on the LgtC acceptor substrate and targeted at a non-catalytic cysteine residue in the LgtC active site. We have successfully synthesised two prototype inhibitors in four steps from lactulose. The key step in our synthesis is a Heyns rearrangement, during which we observed the formation of a hitherto unknown side product. While both lactosamine derivatives behaved as moderate inhibitors of LgtC, they also retained residual substrate activity. These results suggest that in contrast to our original design, these inhibitors do not act via a covalent mode of action, but are most likely non-covalent inhibitors.
Collapse
Affiliation(s)
- Camille C Métier
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Gerd K Wagner
- King's College London, School of Basic & Medical Biosciences, St John's Institute of Dermatology, 9th Floor Tower Wing, Guy's Hospital, London, SE1 9RT, United Kingdom; Queen's University Belfast, School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
10
|
Xu Y, Zhang Z, Jiang X, Chen X, Wang Z, Alsulami H, Qin HL, Tang W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer's disease: Design, synthesis, biological evaluation and SAR studies. Eur J Med Chem 2019; 181:111598. [DOI: 10.1016/j.ejmech.2019.111598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|