1
|
Liang H, Li S, Peng X, Xiao H. Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy. Eur J Med Chem 2025; 285:117235. [PMID: 39788061 DOI: 10.1016/j.ejmech.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance. To overcome these challenges, innovative therapeutic approaches are required, including the combination of epigenetic inhibitors with cytotoxic agents or the design of dual-acting inhibitors that target both epigenetic and cytotoxic pathways. In this review, we provide a comprehensive overview of the structures, biological functions and inhibitors of epigenetic regulators (such as HDAC, LSD1, PARP, and BET) and cytotoxic targets (including tubulin and topoisomerase). Furthermore, we discuss recent advancement of combination therapies and dual-target inhibitors that target both epigenetic and cytotoxic pathways, with a particular focus on recent advances, including rational drug design, pharmacodynamics, pharmacokinetics, and clinical applications.
Collapse
Affiliation(s)
- Hailiu Liang
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Hao Xiao
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
2
|
Joshi G, Yadav UP, Rafiq Z, Grewal P, Kumar M, Singh T, Jha V, Sharma P, Eriksson LA, Srinivas L, Dahibhate NL, Srivastava P, Bhutani P, Mishra UK, Sharon A, Banerjee UC, Sharma N, Chatterjee J, Tikoo K, Singh S, Kumar R. Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents. J Med Chem 2025; 68:2849-2868. [PMID: 39808731 DOI: 10.1021/acs.jmedchem.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential. Our findings revealed that the compound 5c significantly produced anticancer effects in vitro and in vivo by reducing the tumor growth and its size in the A549 cell-induced lung cancer xenograft model through multiple mechanisms, primarily by multi-inhibition of hTopoI/II and HDACs, especially HDAC1 via atypical binding. The present paper discusses detailed mechanistic biological investigations, structure-activity effects supported by computational docking studies, and DMPK studies and provides future scope for lead optimization and modification.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Zahid Rafiq
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Preeti Grewal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | | | | | | | | | - Uttam Kumar Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| |
Collapse
|
3
|
de Sousa VM, Duarte SS, Silva DKF, Ferreira RC, de Moura RO, Segundo MASP, Farias D, Vieira L, Gonçalves JCR, Sobral MV. Cytotoxicity of a new spiro-acridine derivative: modulation of cellular antioxidant state and induction of cell cycle arrest and apoptosis in HCT-116 colorectal carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1901-1913. [PMID: 37676494 DOI: 10.1007/s00210-023-02686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olímpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa , Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa , Paraíba, Brazil.
| |
Collapse
|
4
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
5
|
Patel R, Modi A, Vekariya H. Discovery and Development of HDAC Inhibitors: Approaches for the Treatment of Cancer a Mini-review. Curr Drug Discov Technol 2024; 21:e230224227378. [PMID: 38415493 DOI: 10.2174/0115701638286941240217102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as promising cancer therapeutics due to their ability to induce differentiation, cell cycle arrest, and apoptosis in cancer cells. In the present review, we have described the systemic discovery and development of HDAC inhibitors. Researchers across the globe have identified various small molecules like benzo[d][1,3]dioxol derivatives, belinostat analogs, pyrazine derivatives, quinazolin-4-one-based derivatives, 2,4-imidazolinedione derivatives, acridine hydroxamic acid derivatives, coumarin derivatives, tetrahydroisoquinoline derivatives, thiazole-5-carboxamide, salicylamide derivatives, β-peptoid-capped HDAC inhibitors, quinazoline derivatives, benzimidazole and benzothiazole derivatives, and β- elemene scaffold containing HDAC inhibitors. Most of the scaffolds have shown attractive IC50 (μM) in various cell lines like HDAC1, HDAC2, HDAC6, PI3K, HeLa, MDA-MB-231, MCF-10A, MCF-7, U937, K562 and Bcr-Abl cell lines.
Collapse
Affiliation(s)
- Roshani Patel
- Department of Pharmaceutical Chemistry, R K University, Rajkot, 360020, Gujarat, India
| | - Arjun Modi
- Department of Pharmaceutical Chemistry, R K University, Rajkot, 360020, Gujarat, India
| | - Hitesh Vekariya
- Department of Pharmaceutical Chemistry, School of Pharmacy, R K University, Rajkot, 360020, Gujarat, India
| |
Collapse
|
6
|
Patel P, Shrivastava SK, Sharma P, Kurmi BD, Shirbhate E, Rajak H. Hydroxamic acid derivatives as selective HDAC3 inhibitors: computer-aided drug design strategies. J Biomol Struct Dyn 2024; 42:362-383. [PMID: 36995068 DOI: 10.1080/07391102.2023.2192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Patel
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ekta Shirbhate
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Harish Rajak
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
7
|
Zhao M, Yang K, Zhu X, Gao T, Yu W, Liu H, You Z, Liu Z, Qiao X, Song Y. Design, synthesis and biological evaluation of dual Topo II/HDAC inhibitors bearing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs. Eur J Med Chem 2023; 252:115303. [PMID: 36996717 DOI: 10.1016/j.ejmech.2023.115303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Both topoisomerase II (Topo II) and histone deacetylase (HDAC) are important therapeutic targets for cancer. In this study, two series of novel compounds containing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs were designed and synthesized as dual Topo II/HDAC inhibitors. MTT assay indicated that all the compounds displayed potential antiproliferative activity against three cancer cell lines (MGC-803, MCF-7 and U937) and low cytotoxicity on normal cell line (3T3). In the enzyme activity inhibition experiments, compounds 7d and 8d exhibited excellent dual inhibitory activities against Topo II and HDAC. Cleavage reaction assay showed that 7d was a Topo II poison, which was consistent with the docking results. Further experimental results revealed that compounds 7d and 8d could promote apoptosis and significantly inhibit the migration in MCF-7 cells. Molecular docking showed that compounds 7d and 8d bind Topo II and HDAC at the active sites. Molecular dynamics simulation showed that 7d can stably bind to Topo II and HDAC.
Collapse
Affiliation(s)
- Mengmiao Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xinyue Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Tian Gao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Wei Yu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
8
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
9
|
Okoro CO, Fatoki TH. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int J Mol Sci 2023; 24:ijms24032532. [PMID: 36768852 PMCID: PMC9916523 DOI: 10.3390/ijms24032532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Several reviews of inhibitors of topoisomerase II have been published, covering research before 2018. Therefore, this review is focused primarily on more recent publications with relevant points from the earlier literature. Topoisomerase II is an established target for anticancer drugs, which are further subdivided into poisons and catalytic inhibitors. While most of the topoisomerase II-based drugs in clinical use are mostly topoisomerase II poisons, their mechanism of action has posed severe concern due to DNA damaging potential, including the development of multi-drug resistance. As a result, we are beginning to see a gradual paradigm shift towards non-DNA damaging agents, such as the lesser studied topoisomerase II catalytic inhibitors. In addition, this review describes some novel selective catalytic topoisomerase II inhibitors. The ultimate goal is to bring researchers up to speed by curating and delineating new scaffolds as the leads for the optimization and development of new potent, safe, and selective agents for the treatment of cancer.
Collapse
|
10
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| |
Collapse
|
11
|
Tinkov OV, Grigorev VY, Grigoreva LD, Osipov VN. HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:915-931. [PMID: 36548122 DOI: 10.1080/1062936x.2022.2147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC50 = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Shevchenko Transnistria State University, Tiraspol, Moldova
| | - V Y Grigorev
- Department of Computer-aided Molecular Design, Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka, Russia
| | - L D Grigoreva
- Department of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| | - V N Osipov
- Department of Chemical Synthesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Dong J, Zhu X, Yu W, Hu X, Zhang Y, Yang K, You Z, Liu Z, Qiao X, Song Y. Pyrazolo [3,4-d]pyrimidine-based dual HDAC/Topo II inhibitors: Design, synthesis, and biological evaluation as potential antitumor agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Qin T, Ma YY, Dong CE, Wu WL, Feng YY, Yang S, Su JB, Si XX, Wang XJ, Shi DH. Design, synthesis, cytotoxicity evaluation and molecular docking studies of 1,4-naphthoquinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
A novel aromatic amide derivative SY-65 co-targeted tubulin and histone deacetylase 1 with potent anticancer activity in vitro and in vivo. Biochem Pharmacol 2022; 201:115070. [DOI: 10.1016/j.bcp.2022.115070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/27/2022]
|
15
|
Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEDA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem 2022; 37:1346-1363. [PMID: 35548854 PMCID: PMC9116245 DOI: 10.1080/14756366.2022.2072308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Cancer Biology Department, Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
16
|
Duarte SS, Silva DKF, Lisboa TMH, Gouveia RG, de Andrade CCN, de Sousa VM, Ferreira RC, de Moura RO, Gomes JNS, da Silva PM, de Lourdes Assunção Araújo de Azevedo F, Keesen TSL, Gonçalves JCR, Batista LM, Sobral MV. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol Rep 2022; 74:545-554. [PMID: 35297003 DOI: 10.1007/s43440-022-00357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Acridine compounds have been described as promising anticancer agents. Previous studies showed that (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a spiro-acridine compound, has antitumor activity on Ehrlich tumor and low toxicity. Herein, we investigated its antitumor effect against human cells in vitro. METHODS MTT assay was used to assess cytotoxicity of AMTAC-06 (3.125-200 µM) against tumor and non-tumor cells, and the half-maximal inhibitory concentration (IC50) and the selectivity index (SI) were calculated. The effects on the cell cycle (propidium iodide-PI-staining), apoptosis (Annexin V-FITC/PI double staining by flow cytometry), and production of reactive oxygen species, ROS (DCFH assay) were also evaluated. Statistical analysis was achieved using ANOVA followed by Tukey's post-test. RESULTS AMTAC-06 showed higher cytotoxicity against colorectal carcinoma HCT-116 cells (IC50: 12.62 µM). The SI showed that AMTAC-06 was more selective for HCT-116 cells (HaCaT SI: 1.41; PBMC SI: 0.62) than doxorubicin (HaCaT SI: 0.10; PBMC SI: 0.01). AMTAC-06 (15 and 30 µM) induced an increase in the sub-G1 peak (p < 0.000001) and cell cycle arrest in S phase (p = 0.003547). Moreover, treatment with this compound (15 and 30 µM) resulted in increased early (p < 0.000001) and late apoptotic cells (p < 0.000001). In addition, there was a reduction on ROS production (p < 0.000001). CONCLUSIONS AMTAC-06 presents anticancer activity against HCT-116 cells by regulating the cell cycle, inducing apoptosis and an antioxidant action.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thaís Mangeon Honorato Lisboa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rawny Galdino Gouveia
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olimpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Joilly Nilce Santana Gomes
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Leônia Maria Batista
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Laboratório de Oncofarmacologia (Oncofar), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM). Cidade Universitária, Campus I, João Pessoa, Paraíba, 58051-900, Brazil.
| |
Collapse
|
17
|
Wu S, Huang Y, Wang T, Li K, Lu J, Huang M, Dong G, Sheng C. Evodiamine-Inspired Topoisomerase-Histone Deacetylase Dual Inhibitors: Novel Orally Active Antitumor Agents for Leukemia Therapy. J Med Chem 2022; 65:4818-4831. [PMID: 35238576 DOI: 10.1021/acs.jmedchem.1c02026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
On the basis of the synergism of topoisomerase (Top) and histone deacetylase (HDAC) inhibitors in antitumor therapy, a series of novel Top/HDAC dual inhibitors were designed and synthesized by the pharmacophore fusion strategy. After systematic structure-activity relationship studies, lead compound 16j was identified to simultaneously inhibit both Top and HDAC with good potency, which showed potent antiproliferative activities with a broad spectrum. Mechanistic studies indicated that compound 16j efficiently induced apoptosis with S cell-cycle arrest in HEL cancer cells. It was orally active in HEL xenograft models and exhibited excellent in vivo antitumor efficacy (TGI = 68.5%; 10 mg/kg). Altogether, this work highlights the therapeutic potential of evodiamine-inspired Top/HDAC dual inhibitors and provides a valuable lead compound for the development of novel antitumor agents for leukemia therapy.
Collapse
Affiliation(s)
- Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yahui Huang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Keliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Junjie Lu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Min Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
18
|
Abbasova G, Medjidov A. One-pot synthesis of the new Hydroxamic acid and its complexes with metals. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220111121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A one-pot conversion of 2-hydroxy-1-naphthoic aldehyde to hydroxamic acid was described. An efficient photoorganocatalytic method of synthesis was developed. The obtained hydroxamic acid was identified by various physicochemical methods such as IR, UV- and NMR-spectroscopy. Solid colored complexes of copper (II) and iron (II), respectively, green and brown colours with the obtained hydroxamic acid were synthesized in ethanol medium for the first time. The molar ratio of ligand and metal in the complex was 2:1. Their structures were established using IR, UV- spectroscopy and thermogravimetric analysis.
Collapse
Affiliation(s)
- Gulu Abbasova
- ANAS Institute of Catalysis and Inorganic Chemistry is named after Acad. M. F. Nagiyev
АZ 1143 Baku, H. Cavid Avenue, 113, Azerbaijan
| | - Ajdar Medjidov
- ANAS Institute of Catalysis and Inorganic Chemistry is named after Acad. M. F. Nagiyev
АZ 1143 Baku, H. Cavid Avenue, 113, Azerbaijan
| |
Collapse
|
19
|
Zheng H, Dai Q, Yuan Z, Fan T, Zhang C, Liu Z, Chu B, Sun Q, Chen Y, Jiang Y. Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents. Bioorg Med Chem 2022; 53:116524. [PMID: 34847495 DOI: 10.1016/j.bmc.2021.116524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer is a common malignant disease with complex signaling networks, which means it is unmanageable to cancer therapy by using single classical targeted drug. Recently, dual- or multitarget drugs have emerged as a promising option for cancer therapies. Although many multifunctional compounds targeting HDAC have been validated, as far as we know, there is no molecule targeting GLP and HDAC synchronously. In the present work, we designed and synthesized a series of quinazoline-based hydroxamic acid derivatives as dual GLP and HDAC inhibitors. These hybrid compounds showed potent enzymatic inhibitory activities against GLP and HDAC1/6 with IC50 values in the nanomolar range of less than 190 nM. Furthermore, most of our compounds displayed significant broad spectrum cytotoxic activities apart from D3 and D8 against all the tested cancer cells with IC50 values less than 50 μM. D1, D6 and D7 showed more potent cytotoxic activities than D2, D4 and D5 in those cancer cells. Especially, compound D7 showed potent inhibitory potency activity against both GLP and HDAC1/6 with IC50 values of 1.3, 89, 13 nM. Besides, D7 exhibited the most potent antiproliferative activity against all the tested cancer cells. Further evaluations indicated that D7 could inhibit the methylation and deacetylation of H3K9 on protein level. Moreover, D7 could induce cancer cell apoptosis, G0/G1 cell cycle arrest, and partly block migration and invasion. All these thorough evaluations warranted D7 as a promising lead compound worth further optimization and development for cancer therapy.
Collapse
Affiliation(s)
- Haoting Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Tingting Fan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Cunlong Zhang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zijian Liu
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Bizhu Chu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China
| | - Yan Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China.
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
20
|
Khwaja S, Kumar K, Das R, Negi AS. Microtubule associated proteins as targets for anticancer drug development. Bioorg Chem 2021; 116:105320. [PMID: 34492559 DOI: 10.1016/j.bioorg.2021.105320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022]
Abstract
The dynamic equilibrium of tubulin-microtubule is an essential aspect of cell survivality. Modulation of this dynamics has become an important target for the cancer drug development. Tubulin exists in the alpha-beta dimer form which polymerizes to form microtubule and further depolymerizes back to tubulin dimer. The microtubule plays an essential role in mitosis and cell multiplication. Antitubulin drugs disturb the microtubule dynamics which is essentially required for DNA segregation and cell division during mitosis so killing the cancerous cells. Microtubule Associated Proteins (MAPs) interact with cellular cytoskeletal microtubules. MAPs bind to the either polymerized or depolymerized tubulin dimers within the cell and mostly causing stabilization of microtubules. Some of the tubulin binding drugs are in clinical use and others in clinical trial. MAPs inhibitors are also in clinical trial. Post-translational modification of lysine-40 either in histone or in alpha tubulin has an important role in gene expression and is balanced between histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDAC inhibitors have the anticancer properties to form a drug for the treatment of cancer. They act by inducing cell cycle arrest and cell death. Some of the HDAC inhibitors are approved to be used as anticancer drug while others are under different phases of clinical trial. The present review updates on various MAPs, their role in cancer progression, MAPs inhibitors and their future prospects.
Collapse
Affiliation(s)
- Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kapil Kumar
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Yusuf AP, Abubakar MB, Malami I, Ibrahim KG, Abubakar B, Bello MB, Qusty N, Elazab ST, Imam MU, Alexiou A, Batiha GES. Zinc Metalloproteins in Epigenetics and Their Crosstalk. Life (Basel) 2021; 11:186. [PMID: 33652690 PMCID: PMC7996840 DOI: 10.3390/life11030186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
More than half a century ago, zinc was established as an essential micronutrient for normal human physiology. In silico data suggest that about 10% of the human proteome potentially binds zinc. Many proteins with zinc-binding domains (ZBDs) are involved in epigenetic modifications such as DNA methylation and histone modifications, which regulate transcription in physiological and pathological conditions. Zinc metalloproteins in epigenetics are mainly zinc metalloenzymes and zinc finger proteins (ZFPs), which are classified into writers, erasers, readers, editors, and feeders. Altogether, these classes of proteins engage in crosstalk that fundamentally maintains the epigenome's modus operandi. Changes in the expression or function of these proteins induced by zinc deficiency or loss of function mutations in their ZBDs may lead to aberrant epigenetic reprogramming, which may worsen the risk of non-communicable chronic diseases. This review attempts to address zinc's role and its proteins in natural epigenetic programming and artificial reprogramming and briefly discusses how the ZBDs in these proteins interact with the chromatin.
Collapse
Affiliation(s)
- Abdurrahman Pharmacy Yusuf
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia 35516, Egypt;
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Haidingergasse 29, 1030 Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
22
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
23
|
Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur J Med Chem 2020; 208:112831. [DOI: 10.1016/j.ejmech.2020.112831] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022]
|
24
|
Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur J Med Chem 2020; 205:112679. [PMID: 32791404 DOI: 10.1016/j.ejmech.2020.112679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
25
|
Smalley JP, Cowley SM, Hodgkinson JT. Bifunctional HDAC Therapeutics: One Drug to Rule Them All? Molecules 2020; 25:E4394. [PMID: 32987782 PMCID: PMC7583022 DOI: 10.3390/molecules25194394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.
Collapse
Affiliation(s)
- Joshua P. Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| | - Shaun M. Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK;
| | - James T. Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
26
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
27
|
Vaidya GN, Rana P, Venkatesh A, Chatterjee DR, Contractor D, Satpute DP, Nagpure M, Jain A, Kumar D. Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions. Eur J Med Chem 2020; 209:112844. [PMID: 33143937 DOI: 10.1016/j.ejmech.2020.112844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
'Epigenetic' regulation of genes via post-translational modulation of proteins is the current mainstay approach for the disease therapies, particularly explored in the Histone Deacetylase (HDAC) class of enzymes. Mainly sight saw in cancer chemotherapeutics, HDAC inhibitors have also found a promising role in other diseases (neurodegenerative disorders, cardiovascular diseases, and viral infections) and successfully entered in various combination therapies (pre-clinical/clinical stages). The prevalent flexibility in the structural design of HDAC inhibitors makes them easily tuneable to merge with other pharmacophore modules for generating multi-targeted single hybrids as a novel tactic to overcome drawbacks of polypharmacy. Herein, we reviewed the putative role of prevalent HDAC hybrids inhibitors in the current and prospective stage as a translational approach to overcome the limitations of the existing conventional drug candidates (parent molecule) when used either alone (drug resistance, solubility issues, adverse side effects, selectivity profile) or in combination (pharmacokinetic interactions, patient compliance) for treating various diseases.
Collapse
Affiliation(s)
- Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pooja Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ashwini Venkatesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Darshan Contractor
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India; Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
28
|
de Lera AR, Ganesan A. Two-hit wonders: The expanding universe of multitargeting epigenetic agents. Curr Opin Chem Biol 2020; 57:135-154. [DOI: 10.1016/j.cbpa.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
|
29
|
Zhang B, Zhang Q, Liu Z, Wang N, Jin H, Liu F, Zhang C, He S. Synthesis and Anticancer Research of
N
‐(2‐aminophenyl)benzamide Acridine Derivatives as Dual Topoisomerase I and Isoform‐Selective HDAC Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202001880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bin Zhang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Qiting Zhang
- Institute of Drug Discovery Technology Ningbo University Ningbo Zhejiang 315211 China
| | - Zedong Liu
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| | - Ning Wang
- Institute of Drug Discovery Technology Ningbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Haixiao Jin
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Cunlong Zhang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Shan He
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| |
Collapse
|
30
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
31
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
32
|
Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Skok Ž, Zidar N, Kikelj D, Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J Med Chem 2019; 63:884-904. [DOI: 10.1021/acs.jmedchem.9b00726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27:3511-3531. [PMID: 31300317 PMCID: PMC7185471 DOI: 10.1016/j.bmc.2019.07.005] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
The 1,2,3-triazole ring is a major pharmacophore system among nitrogen-containing heterocycles. These five-membered heterocyclic motifs with three nitrogen heteroatoms can be prepared easily using 'click' chemistry with copper- or ruthenium-catalysed azide-alkyne cycloaddition reactions. Recently, the 'linker' property of 1,2,3-triazoles was demonstrated, and a novel class of 1,2,3-triazole-containing hybrids and conjugates was synthesised and evaluated as lead compounds for diverse biological targets. These lead compounds have been demonstrated as anticancer, antimicrobial, anti-tubercular, antiviral, antidiabetic, antimalarial, anti-leishmanial, and neuroprotective agents. The present review summarises advances in lead compounds of 1,2,3-triazole-containing hybrids, conjugates, and their related heterocycles in medicinal chemistry published in 2018. This review will be useful to scientists in research fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Khurshed Bozorov
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China; Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan.
| | - Jiangyu Zhao
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| |
Collapse
|
35
|
Prasher P, Sharma M. Medicinal chemistry of acridine and its analogues. MEDCHEMCOMM 2018; 9:1589-1618. [PMID: 30429967 PMCID: PMC6195008 DOI: 10.1039/c8md00384j] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
Abstract
'Acridine' along with its functional analogue 'Acridone' is the most privileged pharmacophore in medicinal chemistry with diverse applications ranging from DNA intercalators, endonuclease mimics, ratiometric selective ion sensors, and P-glycoprotein inhibitors in countering the multi-drug resistance, enzyme inhibitors, and reversals of neurodegenerative disorders. Their interaction with DNA and ability of selectively identifying numerous biologically useful ions has cemented exploitability of the acridone nucleus in modern day therapeutics. Additionally, most derivatives and salts of acridine are planar, crystalline, and stable displaying a strong fluorescence which, when coupled with their marked bio selectivity and low cytotoxicity, enables the studying and monitoring of several biochemical, metabolic, and pharmacological processes. In this review, a detailed picture covering the important therapeutic aspects of the acridone nucleus and its functional analogues is discussed.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|