1
|
Sysak S, Wicher B, Kucinska M, Kobylka P, Mlynarczyk DT, Lesyk R, Tykarska E, Murias M, Goslinski T, Szczolko W. Synthesis, physicochemical characterization and biological activity of novel pyrrole flavones. Sci Rep 2025; 15:7385. [PMID: 40033039 DOI: 10.1038/s41598-025-91772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Cancer remains one of the most significant health issues worldwide. By designing compounds with anticancer activity characterized by high selectivity towards cancer cells, medicinal chemistry focuses on the protection of healthy cells and tissues. In this study, we present the hybrid pharmacophore approach, which afforded a series of new pyrrole flavones. The synthetic strategy was based on the Paal-Knorr pyrrole synthesis, starting from aminoflavones through their condensation with 1,4-diketones and leading to 6- and 7-(pyrrol-1-yl) flavones. The isolated products underwent characterization using NMR and UV-VIS spectroscopy, mass spectrometry, TGA, DSC, and Microtox analyses. For all pyrrole flavones, single crystals were obtained and subjected to X-ray diffraction experiments. Their cytotoxic activity was assessed on two human bladder cancer cell lines (5637 and HT-1376) and one non-cancerous (MRC-5) cell line, showing the potential as anticancer agents. Flavone derivative with the 6-(2-methyl-5-phenylpyrrol-1-yl) moiety was active in the MTT assay towards 5637 and HT-1376 cancer cells after 24 h of incubation with IC50 values of 2.97 µM and 5.89 µM, respectively. Notably, flavone derivative with 7-(2-methyl-5-phenylpyrrol-1-yl) revealed cytotoxic activity towards 5637 and HT-1376 cells with IC50 values of 7.39 µM and 13.54 µM, respectively, without any effect on the viability of MRC-5 cells.
Collapse
Affiliation(s)
- Stepan Sysak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812, Poznań, Poland
| | - Barbara Wicher
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Paulina Kobylka
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812, Poznań, Poland
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225, Rzeszów, Poland
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Ewa Tykarska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| | - Wojciech Szczolko
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| |
Collapse
|
2
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
3
|
Villegas C, González-Chavarría I, Burgos V, Iturra-Beiza H, Ulrich H, Paz C. Epothilones as Natural Compounds for Novel Anticancer Drugs Development. Int J Mol Sci 2023; 24:6063. [PMID: 37047035 PMCID: PMC10093981 DOI: 10.3390/ijms24076063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Epothilone is a natural 16-membered macrolide cytotoxic compound produced by the metabolism of the cellulose-degrading myxobacterium Sorangium cellulosum. This review summarizes results in the study of epothilones against cancer with preclinical results and clinical studies from 2010-2022. Epothilone have mechanisms of action similar to paclitaxel by inducing tubulin polymerization and apoptosis with low susceptibility to tumor resistance mechanisms. It is active against refractory tumors, being superior to paclitaxel in many respects. Since the discovery of epothilones, several derivatives have been synthesized, and most of them have failed in Phases II and III in clinical trials; however, ixabepilone and utidelone are currently used in clinical practice. There is robust evidence that triple-negative breast cancer (TNBC) treatment improves using ixabepilone plus capecitabine or utidelone in combination with capecitabine. In recent years innovative synthetic strategies resulted in the synthesis of new epothilone derivatives with improved activity against refractory tumors with better activities when compared to ixabepilone or taxol. These compounds together with specific delivery mechanisms could be developed in anti-cancer drugs.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4800000, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Héctor Iturra-Beiza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4800000, Chile
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
4
|
Gholivand K, Barzegari A, Yousefian M, Malekshah RE, Faraghi M. Experimental and theoretical evaluation of biological properties of a phosphoramide functionalized graphene oxide. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Kaur M, Kaur M, Bandopadhyay T, Sharma A, Priya A, Singh A, Banerjee B. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This chapter describes the importance and activity of a huge number of commercially available naturally occurring, natural product derived or synthetic heterocyclic anti-cancer drugs.
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Mandeep Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Tania Bandopadhyay
- Completed MBBS from North Bengal Medical College and Hospital , Darjeeling , West Bengal , Pin-734432 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Arvind Singh
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Bubun Banerjee
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
6
|
Pandey RP, Dhakal D, Thapa SB, Bashyal P, Kim TS, Sohng JK. UPLC-PDA coupled HR-TOF ESI/MS 2 -based identification of derivatives produced by whole-cell biotransformation of epothilone A using Nocardia sp. CS692 and a cytochrome P450 overexpressing strain. Biotechnol Appl Biochem 2021; 69:1723-1732. [PMID: 34415071 DOI: 10.1002/bab.2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Epothilone A, a microtubule-stabilizing agent used as therapeutics for the treatment of cancers, was biotransformed into three metabolites using Nocardia sp. CS692 and recombinant Nocardia overexpressing a cytochrome P450 from Streptomyces venezuelae (PikC). Among three metabolites produced in the biotransformation reaction mixtures, ESI/MS2 analysis predicted two metabolites (M1 and M2) as novel hydroxylated derivatives (M1 is hydroxylated at the C-8 position and M2 is hydroxylated at C-10 position), each with an opened-epoxide ring in their structure. Interestingly, metabolite M3 lacks an epoxide ring and is known as deoxyepothilone A, which is also called epothilone C. Metabolite M1 was produced only in PikC overexpressing strain. The endogenous enzymes of Nocardia sp. catalyzed hydroxylation of epothilone A to produce metabolite M2 and removed epoxide ring to produce metabolite M3. All the metabolites were identified based on UV-vis analysis and rigorous ESI/MS2 fragmentation based on epothilone A standard. The newly produced metabolites are anticipated to display novel cytotoxic effects and could be subjects of further pharmacological studies.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Samir Bahadur Thapa
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Puspalata Bashyal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Tae-Su Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
7
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
8
|
Liang J, Wang H, Bian X, Zhang Y, Zhao G, Ding X. Heterologous redox partners supporting the efficient catalysis of epothilone B biosynthesis by EpoK in Schlegelella brevitalea. Microb Cell Fact 2020; 19:180. [PMID: 32933531 PMCID: PMC7493146 DOI: 10.1186/s12934-020-01439-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epothilone B is a natural product that stabilizes microtubules, similar to paclitaxel (Taxol); therefore, epothilone B and several derivatives have shown obvious antitumour activities. Some of these products are in clinical trials, and one (ixabepilone, BMS) is already on the market, having been approved by the FDA in 2007. The terminal step in epothilone B biosynthesis is catalysed by the cytochrome P450 enzyme EpoK (CYP167A1), which catalyses the epoxidation of the C12-C13 double bond (in epothilone C and D) to form epothilone A and B, respectively. Although redox partners from different sources support the catalytic activity of EpoK in vitro, the conversion rates are low, and these redox partners are not applied to produce epothilone B in heterologous hosts. RESULTS Schlegelella brevitalea DSM 7029 contains electron transport partners that efficiently support the catalytic activity of EpoK. We screened and identified one ferredoxin, Fdx_0135, by overexpressing putative ferredoxin genes in vivo and identified two ferredoxin reductases, FdR_0130 and FdR_7100, by whole-cell biotransformation of epothilone C to effectively support the catalytic activity of EpoK. In addition, we obtained strain H7029-3, with a high epothilone B yield and found that the proportion of epothilone A + B produced by this strain was 90.93%. Moreover, the whole-cell bioconversion strain 7029-10 was obtained; this strain exhibited an epothilone C conversion rate of 100% in 12 h. Further RT-qPCR experiments were performed to analyse the overexpression levels of the target genes. Gene knock-out experiments showed that the selected ferredoxin (Fdx_0135) and its reductases (FdR_0130 and FdR_7100) might participate in critical physiological processes in DSM 7029. CONCLUSION Gene overexpression and whole-cell biotransformation were effective methods for identifying the electron transport partners of the P450 enzyme EpoK. In addition, we obtained an epothilone B high-yield strain and developed a robust whole-cell biotransformation system. This strain and system hold promise for the industrial production of epothilone B and its derivatives.
Collapse
Affiliation(s)
- Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiaoying Bian
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
9
|
Long R, Yang W, Huang G. Preparation and separation of epothilones with anticancer activity. Chem Biol Drug Des 2020; 96:785-789. [DOI: 10.1111/cbdd.13687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/20/2019] [Accepted: 03/13/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Rong Long
- Active Carbohydrate Research Institute Chongqing Key Laboratory of Green Synthesis and Application College of Chemistry Chongqing Normal University Chongqing China
| | - Wenjian Yang
- Active Carbohydrate Research Institute Chongqing Key Laboratory of Green Synthesis and Application College of Chemistry Chongqing Normal University Chongqing China
| | - Gangliang Huang
- Active Carbohydrate Research Institute Chongqing Key Laboratory of Green Synthesis and Application College of Chemistry Chongqing Normal University Chongqing China
| |
Collapse
|
10
|
Long R, Yang W, Huang G. Optimization of fermentation conditions for the production of epothilone B. Chem Biol Drug Des 2020; 96:768-772. [DOI: 10.1111/cbdd.13682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Long
- Chongqing Key Laboratory of Green Synthesis and Application Active Carbohydrate Research Institute College of Chemistry Chongqing Normal University Chongqing China
| | - Wenjian Yang
- Chongqing Key Laboratory of Green Synthesis and Application Active Carbohydrate Research Institute College of Chemistry Chongqing Normal University Chongqing China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application Active Carbohydrate Research Institute College of Chemistry Chongqing Normal University Chongqing China
| |
Collapse
|
11
|
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125:110009. [PMID: 32106381 DOI: 10.1016/j.biopha.2020.110009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted to include papers from 2010 to June 2019. RESULTS Recent developments in strategies of targeted cancer therapy were reported. Specifically, on the two types of targeted therapy; first, immune-based therapy such as the use of immune checkpoint inhibitors (ICIs), immune cytokines, tumor-targeted superantigens (TTS) and ligand targeted therapeutics (LTTs). The second strategy deals with enzyme/small molecules-based therapies, such as the use of a proteolysis targeting chimera (PROTAC), antibody-drug conjugates (ADC) and antibody-directed enzyme prodrug therapy (ADEPT). The precise targeting of the drug to the gene or protein under attack was also investigated, in other words, how precision medicine can be used to tailor treatments. CONCLUSION The conventional therapeutic paradigm for cancer and other diseases has focused on a single type of intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy as well as combination therapies.
Collapse
Affiliation(s)
- Sara S Bashraheel
- Protein Engineering Unit, Life and Science Research Department, Anti-Doping Lab-Qatar (ADLQ), Doha, Qatar; Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Alexander Domling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sayed K Goda
- Cairo University, Faculty of Science, Chemistry Department, Giza, Egypt.
| |
Collapse
|
12
|
Kuznietsova H, Dziubenko N, Byelinska I, Hurmach V, Bychko A, Lynchak O, Milokhov D, Khilya O, Rybalchenko V. Pyrrole derivatives as potential anti-cancer therapeutics: synthesis, mechanisms of action, safety. J Drug Target 2019; 28:547-563. [PMID: 31814456 DOI: 10.1080/1061186x.2019.1703189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pyrrole derivatives (PDs) chloro-1-(4-chlorobenzyl)-4-((3-(trifluoromethyl)phenyl)amino)-1H-pyrrole-2,5-dione (MI-1) and 5-amino-4-(1,3-benzothyazol-2-yn)-1-(3-methoxyphenyl)-1,2-dihydro-3H-pyrrole-3-one (D1) were synthesised as inhibitors of several protein kinases including EGFR and VEGFR. The aim of the study was to reveal the exact mechanisms of PDs' action EGFR and VEGFR are involved in. We observed, that both PDs could bind with EGFR and VEGFR and form stable complexes. PDs entered into electrostatic interactions with polar groups of phospholipid heads in cell membrane, and the power of interaction depended on the nature of PD radical substituents (greater for MI-1 and smaller for D1). Partial intercalation of MI-1 into the membrane hydrophobic zone also occurred. PDs concentrations induced apoptosis in malignant cells but normal ones had different sensitivity to those. MI-1 and D1 acted like antioxidants in inflamed colonic tissue, as evidenced by reduce of lipid and protein peroxidation products (by 43-67%) and increase of superoxide dismutase activity (by 40 and 58%) with restoring these values to control ones. MI-1 restored reduced haemoglobin and normalised elevated platelets and monocytes in settings of colorectal cancer, whereas D1 normalised only platelets. Thus, MI-1 and D1 could be used as competitive inhibitors of EGFR and VEGFR and antioxidants, which might contribute to realisation of their anti-inflammatory, proapoptotic and antitumor activity.
Collapse
Affiliation(s)
| | | | | | - Vasyl Hurmach
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Andriy Bychko
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Oksana Lynchak
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Demyd Milokhov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olga Khilya
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | |
Collapse
|
13
|
Abstract
Sugar ligand molecules, such as mannose, galactose and glucose, can bind to drug-delivery systems, making them targeted. These glycosylation ligands have the advantages of nontoxicity, no immunogenicity, good biocompatibility and biodegradation. They can be widely used in glycosylation-modified drug-delivery systems. Herein, the targeting mechanisms, synthesis methods and targeting characteristics of glycosylation-modified drug-delivery systems were reviewed.
Collapse
|
14
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
15
|
Huang S, Huang G. Synthesis, anticancer activity and cytotoxicity of 7‐
O
‐β‐
d
‐galactosyl‐polyethylene glycol‐epothilone B. Chem Biol Drug Des 2018; 93:539-543. [DOI: 10.1111/cbdd.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Shiyu Huang
- Active Carbohydrate Research InstituteChongqing Key Laboratory of Inorganic Functional MaterialsChongqing Normal University Chongqing China
| | - Gangliang Huang
- Active Carbohydrate Research InstituteChongqing Key Laboratory of Inorganic Functional MaterialsChongqing Normal University Chongqing China
| |
Collapse
|