1
|
Colarusso E, Chini MG, Bifulco G, Lauro G, Giordano A. Identification and Development of BRD9 Chemical Probes. Pharmaceuticals (Basel) 2024; 17:392. [PMID: 38543178 PMCID: PMC10976250 DOI: 10.3390/ph17030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
The development of BRD9 inhibitors involves the design and synthesis of molecules that can specifically bind the BRD9 protein, interfering with the function of the chromatin-remodeling complex ncBAF, with the main advantage of modulating gene expression and controlling cellular processes. Here, we summarize the work conducted over the past 10 years to find new BRD9 binders, with an emphasis on their structure-activity relationships, efficacies, and selectivities in preliminary studies. BRD9 is expressed in a variety of cancer forms, hence, its inhibition holds particular significance in cancer research. However, it is crucial to note that the expanding research in the field, particularly in the development of new degraders, may uncover new therapeutic potentials.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (E.C.); (G.B.); (G.L.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy;
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (E.C.); (G.B.); (G.L.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (E.C.); (G.B.); (G.L.)
| | - Assunta Giordano
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
2
|
Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, Verma M, Sharma A, Mutreja V. Advances in the Synthesis and Bio-Applications of Pyrazine Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dimple Choudhary
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Meenakshi Verma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
3
|
Fang D, Wang MR, Guan JL, Han YY, Sheng JQ, Tian DA, Li PY. Bromodomain-containing protein 9 promotes hepatocellular carcinoma progression via activating the Wnt/β-catenin signaling pathway. Exp Cell Res 2021; 406:112727. [PMID: 34370992 DOI: 10.1016/j.yexcr.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Epigenetic dysregulation participates in the initiation and progression of hepatocellular carcinoma (HCC). Bromodomain-containing protein 9 (BRD9) can identify acetylated lysine residues, contributing to several cancers. The function and molecular mechanism of BRD9 in HCC remain poorly understood. METHODS BRD9 levels in tissues and cells of HCC and normal liver were evaluated using bioinformatic analysis, real-time PCR, and western blot. BRD9's association with clinical outcomes was investigated via survival analyses. Biological behaviors and pathways related to BRD9 were predicted using gene set enrichment analysis. BRD9's role in proliferation was verified via cell counting kit 8, colony formation, and 5-Ethynyl-2'-deoxyuridine assays. Its role in the cell cycle and apoptosis was assessed using flow cytometry. The role of BRD9 in vivo was investigated using xenograft tumor models. A rescue assay was performed to investigate the molecular mechanism of BRD9. RESULTS BRD9 was markedly upregulated in HCC and higher BRD9 expression was associated with higher grade, advanced stage, greater tumor size, and poorer prognosis. BRD9 overexpression enhanced cell proliferation, cell cycle progress, but impeded cell apoptosis. BRD9 downregulation had the opposite effects. In vivo, BRD9 promoted xenograft tumor growth. Mechanistically, BRD9 activated Wnt/β-catenin signaling, obstruction of which abrogated BRD9-mediated tumorigenesis. CONCLUSION Increased BRD9 in HCC correlated with poor prognosis, which functioned via activating Wnt/β-catenin signaling. Thus, BRD9 might be a promising biomarker and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Dan Fang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mu-Ru Wang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Lun Guan
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying-Ying Han
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Qi Sheng
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China.
| | - De-An Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Wenchang People's Hospital, Hainan, China.
| |
Collapse
|
4
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Rudy HA, Mayer P, Wanner KT. Synthesis of 1,5‐Ring‐Fused Imidazoles from Cyclic Imines and TosMIC – Identification of in situ Generated
N
‐Methyleneformamide as a Catalyst in the van Leusen Imidazole Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Heinrich‐Karl A. Rudy
- Department für Pharmazie Zentrum für Pharmaforschung Ludwig‐Maximilians‐Universität München Butenandtstr. 5‐13. 81377 München Germany
| | - Peter Mayer
- Department für Chemie Ludwig‐Maximilians‐Universität München Butenandtstr. 5‐13. 81377 München Germany
| | - Klaus T. Wanner
- Department für Pharmazie Zentrum für Pharmaforschung Ludwig‐Maximilians‐Universität München Butenandtstr. 5‐13. 81377 München Germany
| |
Collapse
|
6
|
Wang Y, Wang LF, Zhang LL, Sun HB, Zhao J. Molecular mechanism of inhibitor bindings to bromodomain-containing protein 9 explored based on molecular dynamics simulations and calculations of binding free energies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:149-170. [PMID: 31851834 DOI: 10.1080/1062936x.2019.1701075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Recently, bromodomain-containing protein 9 (BRD9) has been a prospective therapeutic target for anticancer drug design. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method were adopted to explore binding modes of three inhibitors (5SW, 5U2, and 5U6) to BRD9 and identify the hot spot of the inhibitor-BRD9 binding. The results indicate that the inhibitor 5SW has the strongest binding ability to BRD9 among the current three inhibitors. Furthermore, the rank of the binding free energies predicted by MM-GBSA approach agrees with that determined by the experimental values. In addition, inhibitor-residue interactions were computed by using residue-based free-energy decomposition method and the results suggest that residue His42 produces the CH-H interactions, residues Asn100, Ile53 and Val49 produce the CH-[Formula: see text] interactions with three inhibitors and Tyr106, Phe45 and Phe44 generate the π-π interactions with inhibitors. Notably, the residue Asn140 forms hydrogen bonding interactions with three inhibitors. This research is expected to provide useful molecular basis and dynamics information at atomic levels for the design of potent inhibitors inhibiting the activity of BRD9.
Collapse
Affiliation(s)
- Y Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|