1
|
Mansouri M, Daware K, Webb CT, McGowan S. Understanding the structure and function of Plasmodium aminopeptidases to facilitate drug discovery. Curr Opin Struct Biol 2023; 82:102693. [PMID: 37657352 DOI: 10.1016/j.sbi.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Malaria continues to be the most widespread parasitic disease affecting humans globally. As parasites develop drug resistance at an alarming pace, it has become crucial to identify novel drug targets. Over the last decade, the metalloaminopeptidases have gained importance as potential targets for new antimalarials. These enzymes are responsible for removing the N-terminal amino acids from proteins and peptides, and their restricted specificities suggest that many perform unique and essential roles within the malaria parasite. This mini-review focuses on the recent progress in structure and functional data relating to the Plasmodium metalloaminopeptidases that have been validated or shown promise as new antimalarial drug targets.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia. https://twitter.com/Mahta__Mansouri
| | - Kajal Daware
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia.
| |
Collapse
|
2
|
Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards. J Biomol Struct Dyn 2022; 40:10481-10506. [PMID: 34129805 DOI: 10.1080/07391102.2021.1932598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria still persists as one of the deadliest infectious disease having a huge morbidity and mortality affecting the higher population of the world. Structure and ligand-based drug design methods like molecular docking and MD simulations, pharmacophore modeling, QSAR and virtual screening are widely used to perceive the accordant correlation between the antimalarial activity and property of the compounds to design novel dominant and discriminant molecules. These modeling methods will speed-up antimalarial drug discovery, selection of better drug candidates for synthesis and to achieve potent and safer drugs. In this work, we have extensively reviewed the literature pertaining to the use and applications of various ligand and structure-based computational methods for the design of antimalarial agents. Different classes of molecules are discussed along with their target interactions pattern, which is responsible for antimalarial activity. Communicated by Ramaswamy H. Sarma.
Collapse
|
3
|
An update on cerebral malaria for therapeutic intervention. Mol Biol Rep 2022; 49:10579-10591. [PMID: 35670928 DOI: 10.1007/s11033-022-07625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral malaria is often pronounced as a major life-threatening neurological complication of Plasmodium falciparum infection. The complex pathogenic landscape of the parasite and the associated neurological complications are still not elucidated properly. The growing concerns of drugresistant parasite strains along with the failure of anti-malarial drugs to subdue post-recovery neuro-cognitive dysfunctions in cerebral malaria patients have called for a demand to explore novel biomarkers and therapeutic avenues. Due course of the brain infection journey of the parasite, events such as sequestration of infected RBCs, cytoadherence, inflammation, endothelial activation, and blood-brain barrier disruption are considered critical. METHODS In this review, we briefly summarize the diverse pathogenesis of the brain-invading parasite associated with loss of the blood-brain barrier integrity. In addition, we also discuss proteomics, transcriptomics, and bioinformatics strategies to identify an array of new biomarkers and drug candidates. CONCLUSION A proper understanding of the parasite biology and mechanism of barrier disruption coupled with emerging state-of-art therapeutic approaches could be helpful to tackle cerebral malaria.
Collapse
|
4
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
5
|
Ojha PK, Kumar V, Roy J, Roy K. Recent advances in quantitative structure-activity relationship models of antimalarial drugs. Expert Opin Drug Discov 2021; 16:659-695. [PMID: 33356651 DOI: 10.1080/17460441.2021.1866535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Due to emerging resistance to the first-line artemisinin-based antimalarials and lack of efficient vaccines and limited chemotherapeutic alternatives, there is an urgent need to develop new antimalarial compounds. In this regard, quantitative structure-activity relationship (QSAR) modeling can provide essential information about required physicochemical properties and structural parameters of antimalarial drug candidates. AREAS COVERED The authors provide an overview of recent advances of QSAR models covering different classes of antimalarial compounds as well as molecular docking studies of compounds acting on different antimalarial targets reported in the last 5 years (2015-2019) to explore the mode of interactions between the molecules and the receptors. We have tried to cover most of the QSAR models of antimalarials (along with results from some other related computational methods) reported during 2015-2019. EXPERT OPINION Many QSAR reports for antimalarial compounds are based on small number of data points. This review infers that most of the present work deals with analog-based QSAR approach with a limited applicability domain (a very few cases with wide domain) whereas novel target-based computational approach is reported in very few cases, which leads to huge voids of computational work based on novel antimalarial targets.
Collapse
Affiliation(s)
- Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Joyita Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Boateng RA, Tastan Bishop Ö, Musyoka TM. Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study. Malar J 2020; 19:442. [PMID: 33256744 PMCID: PMC7756947 DOI: 10.1186/s12936-020-03512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodial transketolase (PTKT) enzyme is one of the novel pharmacological targets being explored as potential anti-malarial drug target due to its functional role and low sequence identity to the human enzyme. Despite this, features contributing to such have not been exploited for anti-malarial drug design. Additionally, there are no anti-malarial drugs targeting PTKTs whereas the broad activity of these inhibitors against PTKTs from other Plasmodium spp. is yet to be reported. This study characterises different PTKTs [Plasmodium falciparum (PfTKT), Plasmodium vivax (PvTKT), Plasmodium ovale (PoTKT), Plasmodium malariae (PmTKT) and Plasmodium knowlesi (PkTKT) and the human homolog (HsTKT)] to identify key sequence and structural based differences as well as the identification of selective potential inhibitors against PTKTs. METHODS A sequence-based study was carried out using multiple sequence alignment, phylogenetic tree calculations and motif discovery analysis. Additionally, TKT models of PfTKT, PmTKT, PoTKT, PmTKT and PkTKT were modelled using the Saccharomyces cerevisiae TKT structure as template. Based on the modelled structures, molecular docking using 623 South African natural compounds was done. The stability, conformational changes and detailed interactions of selected compounds were accessed viz all-atom molecular dynamics (MD) simulations and binding free energy (BFE) calculations. RESULTS Sequence alignment, evolutionary and motif analyses revealed key differences between plasmodial and the human TKTs. High quality homodimeric three-dimensional PTKTs structures were constructed. Molecular docking results identified three compounds (SANC00107, SANC00411 and SANC00620) which selectively bind in the active site of all PTKTs with the lowest (better) binding affinity ≤ - 8.5 kcal/mol. MD simulations of ligand-bound systems showed stable fluctuations upon ligand binding. In all systems, ligands bind stably throughout the simulation and form crucial interactions with key active site residues. Simulations of selected compounds in complex with human TKT showed that ligands exited their binding sites at different time steps. BFE of protein-ligand complexes showed key residues involved in binding. CONCLUSIONS This study highlights significant differences between plasmodial and human TKTs and may provide valuable information for the development of novel anti-malarial inhibitors. Identified compounds may provide a starting point in the rational design of PTKT inhibitors and analogues based on these scaffolds.
Collapse
Affiliation(s)
- Rita Afriyie Boateng
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| | - Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
7
|
Understanding the potency of malarial ligand (D44) in plasmodium FKBP35 and modelled halogen atom (Br, Cl, F) functional groups. J Mol Graph Model 2020; 97:107553. [PMID: 32035313 DOI: 10.1016/j.jmgm.2020.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 11/21/2022]
Abstract
The present study clearly depicts the understanding of the D44 in Plasmodium FKBP35 around the hinge region. To analyse the binding stability of D44 ligand and to understand the role of halogen bond, hydrogen bond interaction formed between the hinge region amino acids: Isoleucine (Ile74), Phenylalanine (Phe54), Aspartic acid (Asp55) Phenylalanine (Phe64),Tyrosine (Tyr100), Tryptophan (TRP 77) and ligand D44 was portrayed specifically through interaction energy calculations at HF, M062X, MP2 level of theories for different basis set (6-311G**, 6-31+G*, LANL2DZ). The investigation will provide an apparent picture regarding the non-covalent interaction that hold the contact of ligand and amino acids in the hinge region and the implication of modelled functional groups (Br, Cl, F, OSO and NH2) on ligand, which will help chemist in synthesizing new novel ligands. HOMO, LUMO chart calculated for D44 ligands reveals graphic illustration of orbital's that stimulate for contact. The aim and natural bond orbital analysis identified key contribution of individual hydrogen/halogen bonds that contribute for the binding strength through stabilization energy, ρ and ∇2ρ values. Overall this study finds out that the Stability of D44 in Plasmodium FKBP35 was enhanced by the Halogen atom (Br, Cl, F) functional groups; which provide an innovative pathway for the selection of functional groups that opt for the hinge region side chains on the ligand.
Collapse
|
8
|
Yadav BS, Chaturvedi N, Marina N. Recent Advances in System Based Study for Anti-Malarial Drug Development Process. Curr Pharm Des 2019; 25:3367-3377. [DOI: 10.2174/1381612825666190902162105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Background:
Presently, malaria is one of the most prevalent and deadly infectious disease across Africa,
Asia, and America that has now started to spread in Europe. Despite large research being carried out in the
field, still, there is a lack of efficient anti-malarial therapeutics. In this paper, we highlight the increasing efforts
that are urgently needed towards the development and discovery of potential antimalarial drugs, which must be
safe and affordable. The new drugs thus mentioned are also able to counter the spread of malaria parasites that
have been resistant to the existing agents.
Objective:
The main objective of the review is to highlight the recent development in the use of system biologybased
approaches towards the design and discovery of novel anti-malarial inhibitors.
Method:
A huge literature survey was performed to gain advance knowledge about the global persistence of
malaria, its available treatment and shortcomings of the available inhibitors. Literature search and depth analysis
were also done to gain insight into the use of system biology in drug discovery and how this approach could be
utilized towards the development of the novel anti-malarial drug.
Results:
The system-based analysis has made easy to understand large scale sequencing data, find candidate
genes expression during malaria disease progression further design of drug molecules those are complementary of
the target proteins in term of shape and configuration.
Conclusion:
The review article focused on the recent computational advances in new generation sequencing,
molecular modeling, and docking related to malaria disease and utilization of the modern system and network
biology approach to antimalarial potential drug discovery and development.
Collapse
Affiliation(s)
- Brijesh S. Yadav
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| |
Collapse
|
9
|
Devillers J, Devillers H. Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:801-824. [PMID: 31565973 DOI: 10.1080/1062936x.2019.1665844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Human malaria is the most widespread mosquito-borne life-threatening disease worldwide. In the absence of effective vaccines, prevention and treatment of malaria only depend on prophylaxis and drug-based therapy either in monotherapy or in combination. Unfortunately, the number of available antimalarial drugs presenting different mechanisms of action is rather limited. In addition, the appearance of drug-resistance in the parasite strains impacts the efficacy of the treatments. As a result, there is a crucial need to find new drugs to circumvent resistance problems. In the quest to identify new antimalarial agents a huge number of plant-derived compounds (PDCs) have been investigated. Surprisingly in the in silico PDC screening programs, toxicity filters are either never used or so simple that their interest is limited. In this context, the goal of this study was to show how to take advantage of validated toxicity QSAR models for refining the selection of PDCs. From an original data set of 507 PDCs collected from the literature, the use of toxicity filters for endocrine disruption, developmental toxicity, and hepatotoxicity in conjunction with classical pharmacokinetic filters allowed us to obtain a list of 31 compounds of potential interest. The pros and cons of such a strategy have been discussed.
Collapse
Affiliation(s)
| | - H Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| |
Collapse
|