1
|
Jurj A, Fontana B, Varani G, Calin GA. Small molecules targeting microRNAs: new opportunities and challenges in precision cancer therapy. Trends Cancer 2024; 10:809-824. [PMID: 39107162 PMCID: PMC11961049 DOI: 10.1016/j.trecan.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/09/2024]
Abstract
Noncoding RNAs, especially miRNAs, play a pivotal role in cancer initiation and metastasis, underscoring their susceptibility to precise modulation via small molecule inhibitors. This review examines the innovative strategy of targeting oncogenic miRNAs with small drug-like molecules, an approach that can reshape the cancer treatment landscape. We review the current understanding of the multifaceted roles of miRNAs in oncogenesis, highlighting emerging therapeutic paradigms that have the potential to expand cancer treatment options. As research on small molecule inhibitors of miRNA is still in its early stages, ongoing investigative efforts and the development of new technologies and chemical matter are essential to fulfill the significant potential of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Ancuta Jurj
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beatrice Fontana
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Tadesse K, Benhamou RI. Targeting MicroRNAs with Small Molecules. Noncoding RNA 2024; 10:17. [PMID: 38525736 PMCID: PMC10961812 DOI: 10.3390/ncrna10020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.
Collapse
Affiliation(s)
| | - Raphael I. Benhamou
- The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Chaudhry T, Coxon CR, Ross K. Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discov Today 2022; 27:103337. [PMID: 35995360 DOI: 10.1016/j.drudis.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
It is well established that microRNA (miRNA) dysregulation is involved in the development and progression of various diseases, especially cancer. Emerging evidence suggests that small molecule and peptide agents can interfere with miRNA disease pathways. Despite this, very little is known about structural features that drive drug-miRNA interactions and subsequent inhibition. In this review, we highlight the advances made in the development of small molecule and peptide inhibitors of miRNA processing. Specifically, we attempt to draw attention to peptide features that may be critical for interaction with the miRNA secondary structure to regulate miRNA expression. We hope that this review will help to establish peptides as exciting miRNA expression modulators and will contribute towards the development of the first miRNA-targeting peptide therapy.
Collapse
Affiliation(s)
- Talhat Chaudhry
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH14 4AS, UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
4
|
Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196717. [PMID: 36235253 PMCID: PMC9573214 DOI: 10.3390/molecules27196717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
With the increasing understanding of various disease-related noncoding RNAs, ncRNAs are emerging as novel drugs and drug targets. Nucleic acid drugs based on different types of noncoding RNAs have been designed and tested. Chemical modification has been applied to noncoding RNAs such as siRNA or miRNA to increase the resistance to degradation with minimum influence on their biological function. Chemical biological methods have also been developed to regulate relevant noncoding RNAs in the occurrence of various diseases. New strategies such as designing ribonuclease targeting chimeras to degrade endogenous noncoding RNAs are emerging as promising approaches to regulate gene expressions, serving as next-generation drugs. This review summarized the current state of noncoding RNA-based theranostics, major chemical modifications of noncoding RNAs to develop nucleic acid drugs, conjugation of RNA with different functional biomolecules as well as design and screening of potential molecules to regulate the expression or activity of endogenous noncoding RNAs for drug development. Finally, strategies of improving the delivery of noncoding RNAs are discussed.
Collapse
|
5
|
El-Ghobashy NM, El-Sayed SM, Shehata IA, El-Ashmawy MB. Synthesis, biological evaluation, and molecular modeling studies of new benzoxazole derivatives as PARP-2 inhibitors targeting breast cancer. Sci Rep 2022; 12:16246. [PMID: 36171229 PMCID: PMC9519869 DOI: 10.1038/s41598-022-20260-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Many benzoxazole-based and similar scaffolds were reported to have wide-range of anticancer activities. In this study, four series of benzoxazole derivatives were designed by combining benzoxazole scaffold with different amines via a reversed phenyl amide linker to produce the compounds of series A, B and C. A fourth new hybrid of benzoxazole with 1,2,3 triazole ring (series D) was also designed. The designed compounds were synthesized and screened for their anti-breast cancer activity against MDA-MB-231 and MCF-7 cell lines using MTT assay. The most potent cytotoxic compounds; 11–14, 21, 22, 25–27 were further evaluated for their in vitro PARP-2 enzyme inhibition. Compounds 12 and 27 proved to be the most active PARP-2 inhibitors with IC50 values of 0.07 and 0.057 µM, respectively. Compounds 12 and 27 caused cell cycle arrest in mutant MCF-7 cell line at G2/M and G1/S phase, respectively and they possessed significant apoptosis-promoting activity. Docking results of compounds 12 and 27 into PARP-2 pocket demonstrated binding interactions comparable to those of olaparib. Their predicted pharmacokinetic parameters and oral bioavailability appeared to be appropriate. Collectively, it could be concluded that compounds 12 and 27 are promising anti-breast cancer agents that act as PARP-2 inhibitors with potent apoptotic activity.
Collapse
Affiliation(s)
- Nadeen M El-Ghobashy
- Department of Medicinal Chemistry Pharmacy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry Pharmacy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ihsan A Shehata
- Department of Medicinal Chemistry Pharmacy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry Pharmacy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Xi XX, Hei YY, Guo Y, Zhao HY, Xin M, Lu S, Jiang C, Zhang SQ. Identification of benzamides derivatives of norfloxacin as promising microRNA-21 inhibitors via repressing its transcription. Bioorg Med Chem 2022; 66:116803. [PMID: 35561631 DOI: 10.1016/j.bmc.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
MicroRNA-21 is a carcinogenic microRNA, whose overexpression arises in a variety of tumor tissues. Hence, microRNA-21 a prospective target for cancer treatment, and regulation of microRNA-21 by small molecule inhibitors is deemed as a promising approach for tumor therapy. In this work, to discover potent microRNA-21 inhibitor, series of 4-(N-norfloxacin-acyl)aminobenzamides were designed and synthesized, and their inhibitory effects were appraised by utilizing dual luciferase reporter assays. The results indicated that compound A7 was the most efficient microRNA-21 small molecule inhibitor. What's more, A7 suppressed the migration of Hela cells and the colony formation of Hela and HCT-116 cells as well as promoted apoptosis of Hela cells. In the mechanism study, results of RT-qPCR certified that A7 could reduce the level of mature microRNA-21 via disrupting its expression at the transcriptional level of its primary form "pri-miR-21", which was distinct from most previous inhibitors directly binding with pre-miR-21. Noticeably, Western blotting and RT-qPCR uncovered A7 could upregulate the expression PTEN, EGR1 and SLIT2, which are the downstream functional targets of microRNA-21. These findings demonstrated that A7 was a promising microRNA-21 small molecule inhibitor and 4-(N-norfloxacin-acyl) aminobenzamide can serve as a new scaffold for discovery of potent microRNA-21 inhibitor.
Collapse
Affiliation(s)
- Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yuanxu Guo
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
7
|
Dou X, Sun X, Huang H, Jiang L, Jin Z, Liu Y, Zou Y, Li Z, Zhu G, Jin H, Jiao N, Zhang L, Liu Z, Zhang L. Discovery of novel ataxia telangiectasia mutated (ATM) kinase modulators: Computational simulation, biological evaluation and cancer combinational chemotherapy study. Eur J Med Chem 2022; 233:114196. [DOI: 10.1016/j.ejmech.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
8
|
Zhao R, Fu J, Zhu L, Chen Y, Liu B. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J Hematol Oncol 2022; 15:14. [PMID: 35123522 PMCID: PMC8817562 DOI: 10.1186/s13045-022-01230-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been defined as a class of RNA molecules transcribed from the genome but not encoding proteins, such as microRNAs, long non-coding RNAs, Circular RNAs, and Piwi-interacting RNAs. Accumulating evidence has recently been revealing that ncRNAs become potential druggable targets for regulation of several small-molecule compounds, based on their complex spatial structures and biological functions in cancer therapy. Thus, in this review, we focus on summarizing some new emerging designing strategies, such as high-throughput screening approach, small-molecule microarray approach, structure-based designing approach, phenotypic screening approach, fragment-based designing approach, and pharmacological validation approach. Based on the above-mentioned approaches, a series of representative small-molecule compounds, including Bisphenol-A, Mitoxantrone and Enoxacin have been demonstrated to modulate or selectively target ncRNAs in different types of human cancers. Collectively, these inspiring findings would provide a clue on developing more novel avenues for pharmacological modulations of ncRNAs with small-molecule drugs for future cancer therapeutics.
Collapse
|
9
|
Pandit A, Begum Y, Saha P, Srivastava AK, Swarnakar S. Approaches Toward Targeting Matrix Metalloproteases for Prognosis and Therapies in Gynecological Cancer: MicroRNAs as a Molecular Driver. Front Oncol 2022; 11:720622. [PMID: 35145899 PMCID: PMC8821656 DOI: 10.3389/fonc.2021.720622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by small non-coding RNA molecules like microRNAs (miRNAs) which act as cellular mediators necessary for growth, differentiation, proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in many human malignancies, acting both as tumor-promoting and suppressing, and their abnormal expression is linked to unrestrained cellular proliferation, metastasis, and perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs) have crucial roles in both growth, and tissue remodeling in normal conditions, as well as in promoting cancer development and metastasis. Herein, we outline an integrated interactive study involving various MMPs and miRNAs and also feature a way in which these communications impact malignant growth, movement, and metastasis. The present review emphasizes on important miRNAs that might impact gynecological cancer progression directly or indirectly via regulating MMPs. Additionally, we address the likely use of miRNA-mediated MMP regulation and their downstream signaling pathways towards the development of a potential treatment of gynecological cancers.
Collapse
Affiliation(s)
- Anuradha Pandit
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yasmin Begum
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Snehasikta Swarnakar
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Snehasikta Swarnakar,
| |
Collapse
|
10
|
Abstract
RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.
Collapse
Affiliation(s)
- Farzad Zamani
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
11
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Courtney TM, Deiters A. Optical control of protein phosphatase function. Nat Commun 2019; 10:4384. [PMID: 31558717 PMCID: PMC6763421 DOI: 10.1038/s41467-019-12260-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatases are involved in embryonic development, metabolic homeostasis, stress response, cell cycle transitions, and many other essential biological mechanisms. Unlike kinases, protein phosphatases remain understudied and less characterized. Traditional genetic and biochemical methods have contributed significantly to our understanding; however, these methodologies lack precise and acute spatiotemporal control. Here, we report the development of a light-activated protein phosphatase, the dual specificity phosphatase 6 (DUSP6 or MKP3). Through genetic code expansion, MKP3 is placed under optical control via two different approaches: (i) incorporation of a caged cysteine into the active site for controlling catalytic activity and (ii) incorporation of a caged lysine into the kinase interaction motif for controlling the protein-protein interaction between the phosphatase and its substrate. Both strategies are expected to be applicable to the engineering of a wide range of light-activated phosphatases. Applying the optogenetically controlled MKP3 in conjunction with live cell reporters, we discover that ERK nuclear translocation is regulated in a graded manner in response to increasing MKP3 activity.
Collapse
Affiliation(s)
- Taylor M Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|