1
|
Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Advances in adrenergic receptors for the treatment of chronic obstructive pulmonary disease: 2023 update. Expert Opin Pharmacother 2023; 24:2133-2142. [PMID: 37955136 DOI: 10.1080/14656566.2023.2282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Strong scientific evidence and large experience support the use of β2-agonists for the symptomatic alleviation of COPD. Therefore, there is considerable effort in discovering highly potent and selective β2-agonists. AREAS COVERED Recent research on novel β2-agonists for the treatment of COPD. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to September 2023." EXPERT OPINION Compounds that preferentially activate a Gs- or β-arrestin-mediated signaling pathway via β- adrenoceptors (ARs) are more innovative. Pepducins, which target the intracellular region of β2-AR to modulate receptor signaling output, have the most interesting profile from a pharmacological point of view. They stabilize the conformation of the β2-AR and influence its signaling by interacting with the intracellular receptor-G protein interface. New bifunctional drugs called muscarinic antagonist-β2 agonist (MABA), which have both muscarinic receptor (mAChR) antagonism and β2-agonist activity in the same molecule, are a new opportunity. However, all tested compounds have been shown to act predominantly as mAChR antagonists or β2-agonists. An intriguing idea is to utilize allosteric modulators that bind to β2-ARs at sites different than those bound by orthosteric ligands to augment or reduce the signaling transduced by the orthosteric ligand.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
2
|
Feng Y, Zhou Z, Wu S, Lin W, Lu S, Pang X, Xia K, He F, Zhang Q, Yang H, Wang Z. Biocatalytic Asymmetric Reduction of a Sterically Hindered α-Bromo Ketone for the Synthesis of Key Intermediates of Olodaterol. Org Process Res Dev 2023; 27:640-648. [DOI: 10.1021/acs.oprd.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Yahui Feng
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P. R. China
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Zihong Zhou
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P. R. China
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuming Wu
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P. R. China
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Wei Lin
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Songquan Lu
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Xiaolei Pang
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Ke Xia
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Fang He
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Qin Zhang
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hu Yang
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Zhongqing Wang
- School of Pharmacy, Xiangnan University, Chenzhou 423000, Hunan, China
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, P. R. China
- Department of Process Research and Development, HEC Pharm Group, Dongguan 523871, P. R. China
| |
Collapse
|
3
|
Nieto CT, Manchado A, Belda L, Diez D, Garrido NM. 2-Phenethylamines in Medicinal Chemistry: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020855. [PMID: 36677913 PMCID: PMC9864394 DOI: 10.3390/molecules28020855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.
Collapse
|
4
|
Zhang Y, Wang J, Yang Z, Zhang Z, He X, Chen G, Huang G, Lu X. Hydrazine Hydrate Accelerates Neocuproine-Copper Complex Generation and Utilization in Alkyne Reduction, a Significant Supplement Method for Catalytic Hydrogenation. J Org Chem 2021; 86:17696-17709. [PMID: 34818024 DOI: 10.1021/acs.joc.1c01803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diimine (HN═NH) is a strong reducing agent, but the efficiency of diimine oxidized from hydrazine hydrate or its derivatives is still not good enough. Herein, we report an in situ neocuproine-copper complex formation method. The redox potential of this complex enable it can serve as an ideal redox catalyst in the synthesis of diimine by oxidation of hydrazine hydrate, and we successfully applied this technique in the reduction of alkynes. This reduction method displays a broad functional group tolerance and substrate adaptability as well as the advantages of safety and high efficiency. Especially, nitro, benzyl, boc, and sulfur containing alkynes can be reduced to the corresponding alkanes directly, which provides a useful complementary method to traditional catalytic hydrogenation. Besides, we applied this method in the preparation of the Alzheimer's disease drug CT-1812 and studied the mechanism.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jincheng Wang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Zhenjiao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Zeng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| |
Collapse
|
5
|
Xing G, Zhi Z, Yi C, Zou J, Jing X, Yiu-Ho Woo A, Lin B, Pan L, Zhang Y, Cheng M. 8-Hydroxyquinolin-2(1H)-one analogues as potential β 2-agonists: Design, synthesis and activity study. Eur J Med Chem 2021; 224:113697. [PMID: 34273662 DOI: 10.1016/j.ejmech.2021.113697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
β2-Agonists that bind to plasmalemmal β2-adrenoceptors causing cAMP accumulation are widely used as bronchodilators in chronic respiratory diseases. Here, we designed and synthesized a group of 8-hydroxyquinolin-2(1H)-one analogues and studied their β2-agonistic activities with a cellular cAMP assay. Compounds B05 and C08 were identified as potent (EC50 < 20 pM) and selective β2-agonists among the compounds tested. They behaved as partial β2-agonists in non-overexpressed HEK293 cells, and possessed rapid smooth muscle relaxant actions and long duration of action in isolated guinea pig tracheal strip preparations. In summary, B05 and C08 are β2-agonists with potential applicability in chronic respiratory diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengxing Zhi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ce Yi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jitian Zou
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xuefeng Jing
- General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, 12300, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuyang Zhang
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Maosheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Chen ME, Chen XW, Hu YH, Ye R, Lv JW, Li B, Zhang FM. Recent advances of Ritter reaction and its synthetic applications. Org Chem Front 2021. [DOI: 10.1039/d1qo00496d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a comprehensive survey of Ritter reactions from 2014 to 2020.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Rui Ye
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jian-Wei Lv
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
7
|
KneŽević A, Novak J, Bosak A, Vinković M. Structural isomers of saligenin-based β2-agonists: synthesis and insight into the reaction mechanism. Org Biomol Chem 2020; 18:9675-9688. [PMID: 33220672 DOI: 10.1039/d0ob02095h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salmeterol and albuterol are well-known β2-adenoreceptor agonists widely used in the treatment of inflammatory respiratory diseases, such as bronchial asthma and chronic obstructive pulmonary disease. Here we report the preparation of structural isomers of salmeterol and albuterol, which can be obtained from the same starting material as the corresponding β2-agonists, depending on the synthetic approach employed. Using 1D and various 2D NMR measurements, we determined that the structure of prepared isomers holds the β-aryl-β-aminoethanol moiety, in contrast to the α-aryl-β-aminoethanol moiety found in salmeterol and albuterol. We investigated the reaction of β-halohydrin and amines responsible for the formation of β-aryl-β-amino alcohol - both experimentally and using computational methods. The structure of β-halohydrin with the methyl salicylate moiety imposes the course of the reaction. The solvent plays a relevant, yet ambiguous role in the direction of the reaction, while the strength of the base influences the reaction yield and isomer ratio in a more evident way. Using computational methods, we have shown that the most probable reaction intermediate responsible for the formation of the unexpected isomer is the corresponding para-quinone methide, which can be formed due to phenol present in the methyl salicylate moiety. After successful preparation of albuterol and salmeterol isomers, we tested their inhibition potency to human acetylcholinesterase (AChE) and usual and atypical butyrylcholinesterase (BChE). Kinetic studies revealed that both isomers are low-potency reversible inhibitors of human cholinesterases.
Collapse
Affiliation(s)
- Anamarija KneŽević
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
8
|
Burkes RM, Panos RJ. Ultra Long-Acting β-Agonists in Chronic Obstructive Pulmonary Disease. J Exp Pharmacol 2020; 12:589-602. [PMID: 33364854 PMCID: PMC7751789 DOI: 10.2147/jep.s259328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Inhaled β-agonists have been foundational medications for maintenance COPD management for decades. Through activation of cyclic adenosine monophosphate pathways, these agents relax airway smooth muscle and improve expiratory airflow by relieving bronchospasm and alleviating air trapping and dynamic hyperinflation improving breathlessness, exertional capabilities, and quality of life. β-agonist drug development has discovered drugs with increasing longer durations of action: short acting (SABA) (4-6 h), long acting (LABA) (6-12 h), and ultra-long acting (ULABA) (24 h). Three ULABAs, indacaterol, olodaterol, and vilanterol, are approved for clinical treatment of COPD. PURPOSE This article reviews both clinically approved ULABAs and ULABAs in development. CONCLUSION Indacaterol and olodaterol were originally approved for clinical use as monotherapies for COPD. Vilanterol is the first ULABA to be approved only in combination with other respiratory medications. Although there are many other ULABA's in various stages of development, most clinical testing of these novel agents is suspended or proceeding slowly. The three approved ULABAs are being combined with antimuscarinic agents and corticosteroids as dual and triple agent treatments that are being tested for clinical use and efficacy. Increasingly, these clinical trials are using specific COPD clinical characteristics to define study populations and to begin to develop therapies that are trait-specific.
Collapse
Affiliation(s)
- Robert M Burkes
- University of Cincinnati Division of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, OH, USA
- Department of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati Veterans’ Affairs Medical Center, Cincinnati, OH, USA
| | - Ralph J Panos
- University of Cincinnati Division of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, OH, USA
- Department of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati Veterans’ Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|